An Introduction to Marine Optics

K. H. Rao

Oceanography Group\ECSA
National Remote Sensing Centre\ISRO
Balanagar, Hyderabad — 500037
E-mail: rao_kh@nrsc.gov.in

WHAT IS OCEAN COLOUR?

Colour of the ocean is **BLUE** in clear water but it changes due to:

- Phytoplankton Patchiness
- Inorganic/Organic Matter

"There are only two things that can happen to photons within water: they can be absorbed or they can be scattered."

Scattering is the change of direction of a photon

Absorption is the loss of a photon

Nature of light

EMR- Photons or quanta — A beam of light-continual stream of photons — very large — number of photons travels at speed of 3 x 10 8 m/s

In summer one sq meter of horizontal surface receives About x10 21 quanta/s of visible light

Each photon has a λ and ν related as $\lambda = c/\nu$, c is m/s, ν is cycles/s, λ is in meters. Generally I Remote Sensing λ is in nanometers.

Energy $\varepsilon = h \nu = h c/\lambda$ h is Planck constant 6.63 x10 –34 Js

Nature of light

A monochromatic radiant flux of Quanta (J/s) can be converted to Watts(W) i.e

quanta/s = 5.03 x radiant flux of wavelength x 1015

(it is not as simple to convert a photon of quanta to PAR because λ varies continuously)

Morel & Smith (1974) Q: W is 2.77 x10 18 quanta/s / w with in PAR(\Box 10%)

Refractive Index of air 1.00028. Vacuum 1.0

C in water is 2.25 x10 8 m/s as in air is 3.000 x10 8 m/s

PENETRATION OF LIGHT

$$I(z) = I(0)e^{-Kz}$$

non-spectral, uniform depth

$$I(z) = I(0)e^{-\int_{0}^{z} K(z')dz'}$$

non-spectral, Non uniform depth

$$I(z,\lambda) = I(0,\lambda)e^{-\int_{0}^{z} K(z',\lambda)dz'}$$
 non-spectral, Non uniform depth

$$I(z) = \int_{\lambda=400}^{\lambda=700} I(0,\lambda) e^{-\int_{0}^{z} K(z',\lambda)dz'} d\lambda$$

Water Column Considerations

• The decay of incident light with depth is described by the downwelling diffuse attenuation coefficient - either spectrally with $K_d(\lambda)$ or broadband (400 nm - 700 nm) with $K_d(PAR)$

$$E_d(z) = E_d(0) e^{-K_d z}$$
 optical depth $\zeta = K_d z$

- Incident irradiance is therefore typically attenuated in an exponential manner
- The euphotic (well lit) zone is defined as being the layer within which $E_d(PAR)$ falls to within 1% of the subsurface value.
- \sim 90 % of water leaving radiance, or the satellite signal, emerges from the first optical depth or $1/K_d$

Optical Properties of the Sea

Inherent Optical Properties

"...depend only upon the substances comprising the aquatic medium and not on the geometric structure of the light fields..."

Absorption coefficient a [m⁻¹] Attenuation coefficient c [m⁻¹] Scattering coefficient b [m⁻¹] Backscattering coefficient b_b [m⁻¹] Volume scattering function β [m⁻¹sr⁻¹]

Apparent Optical Properties

Radiance L [W m⁻² sr⁻¹] ratio of these is Reflectance R Irradiance E [W m⁻²] or ocean colour Diffuse attenuation coefficient K [m⁻¹]

All of the above are wavelength (λ) dependent

OCEAN OPTICS

The Absorbing and Scattering Constituents of Seawater

These can be separated into particulate and dissolved components

Major Components

- The water itself
- Phytoplankton
- Gelbstoff or coloured dissolved organic material (CDOM)
- Other suspended particulate such as algal detritus and suspended sediment

Minor Components

- Bacteria
- Viruses
- Bubbles

The bulk optical properties of seawater can be treated cumulatively from an ocean colour perspective e.g.

$$reflectanc\ e\ R = G\frac{b_b}{a + b_b} = G\frac{b_{b\ water} + b_{b\ plankton}}{a_{water} + a_{plankton} + a_{gelbstoff} + b_{b\ water} + b_{b\ plankton}}$$

downwelling irradiance E_d

water-leaving radiance L_w

The Absorption and Backscattering of Water

(or why water is blue)

Water absorbs strongly in the red

Water backscatters strongly in the blue

Reflectance (R) = Eu / Ed

$$R(\lambda) = 0.33 \text{ bb}(\lambda) = /(a(\lambda) + bb(\lambda))$$

Kd = (1/z1-z2) Ln (Ed(1)/Ed(2))

1. Irradiance, radiance, and reflectance

Irradiance (E)

flux per unit surface area (W.m-2.nm-1)

Radiance (L)

flux per unit area and per unit solid angle (W.m-2.nm-1.sr-1)

Reflectance (R)

R=Eu/Ed (no dimension)

Remote Sensing Reflectance

Rrs=Lu/Ed (sr-1)

Optical properties of water

- Apparent Optical properties
 - 1. Light intensity
 - 2. Light attenuation
 - 3. Reflectance

- Inherent Optical Properties
 - 1. Absorption
 - 2. Scattering

CLASSIFICATION OF WATERS

CASE-1

Dominance of Chlorophyll

CASE-2

- Dominance of Yellow substances
- Dominance of Suspended Sediment

<u>Constituent</u>	Optical Result		
Water it Self	Absorbs mainly red light, in the longer wavelengths. Weakly scattering		
Colored dissolved Organic matter	Strongly absorbs light, mostly shorter wavelengths, especially blues. Scatter is negligible.		
Phytoplankton	Strongly absorbing and scattering. Absorption is selective with peaks in the blue and red regions. Scatter is mainly directed forward.		
Suspended particulate matter	Strongly scattering. Absorption characteristics depend upon composition of the particulate material.		

Normal conditions

Primary Optical Measurements

- •Incident Spectral Irradiance, Es
- •Down welled Spectral Irradiance,Ed
- •Up welled Spectral radiance,Lu

Derived Variables

- •Water-Leaving Radiance,Lw
- •Attenuation Coefficient Down welled Irradiance, K_{ed}
- •Attenuation Coefficient Up welled radiance, K_{lu}
- Spectral Reflectance, R

Ambient Properties

- Sea and Sky state
- •Wind Velocity
- •Temperature and Salinity Profiles
- Secchi Depth

Primary Biogeochemical Measurements

- •Phytoplankton Pigments
- •Total Suspended Material
- •Colored Dissolved Organic Material

Fluorescence spectral signature

Increase in fluorescence

Detection of Phytoplankton Pigment using remote sensing

Spectral Curves for different water constituents

The Absorption and Backscattering of Phytoplankton

There is a great diversity of phytoplankton species in the world oceans. A typical litre of seawater is likely to contain hundreds of thousands of cells of many different species.

The optical properties of a phytoplankton assemblage will depend upon the following factors: 1. The variable presence and concentration of intracellular pigments.

2. The size, shape and material structure of the cells

Dominant Species

A. anophagefferens

Ceratium spp.

A. catenella, Ceratium spp.

West Coast Gymnodinium sp.

Dinophysis spp, Nitzchia spp.

Chlorophyte

Diatom

G. mikimotoi

Mixed

Mesodinium rubrum

The Absorption and Backscattering of Phytoplankton

Particulate absorption data, measured using a spectrophotometer, and particulate backscattering data, modelled using spherical particle models, from algal blooms.

G. mikimotoi

Mesodinium rubrum ($b_b=x0.2$)

Diatom

Mixed

Gelbstoff, Detritus and Suspended Sediment

- Gelbstoff (coloured dissolved organic matter) and detritus (non algal biological particulate) are also typically present in seawater and must be considered in bio-optical models.
- Inorganic sediments are typically highly scattering with low absorption, and need to be considered on a case specific basis e.g. in areas of high river discharge or resuspension

Typical exponential decay with wavelength of gelbstoff and detritus absorption

Modelled backscattering of quartz sediment at 1 mg m⁻³

Influence of Water Constituents on Water Leaving Reflectance Spectrum

Spectral reflectance of different remote sensing objects

Table 4-2 Chlorophyll algorithms used in this study

Algorithms	Type	Empirical equation	Band ratio (R)	Coefficients (a)
Aiken – C	Hyperboli	$C_{21} = \exp(a_0 + a_1 \times \ln(R))$	Lw[N]490/	[0.745, -2.252]
(Aiken et.	c	$C_{23}=(R+a_2)/(a_3+a_4\times R)$	Lw[N]555	
al., 1995)	+ power	$C = C_{21}$;		
		if C<2 mg m ⁻³		
		then $C = C_{23}$		
OCTS – C	Power	$C = 10^(a_0+a_1 \times R)$	log	[-0.55006, 3.497]
(O'Reilly			((L _W [N]520+L	
et. al.,			w[N]565)/	
1998)			L _W [N]490)	
POLDER	Cubic	$C = 10^(a_0 + a_1 \times R)$	log(R _{rs} 443/R _{rs}	[0.438, -2.114, 0.916,
(Morel,		$+a_2 \times R^2 + a_3 \times R^3$)	565)	-0.851]
1988)				
Morel -3	Cubic	$C = 10^(a_0 + a_1 \times R)$	log(R _{rs} 443/R _{rs}	[0.20766, -1.828,
(Morel,		$+a_2 \times R^2 + a_3 \times R^3$)	565)	0.75, -0.739]
1988)				
OC2 V. 4	Modified	$C = 10^(a_0 + a_1 \times R)$	Log(R _{rs} 490/R _{rs}	[0.319, -2.336, 0.879,
(O'Reilly	cubic	$+a_2 \times R^2 + a_3 \times R^3$)	555)	-0.135, -0.071]
et. al.,		+ a ₄		
2000)				
OC4 V. 4	Modified	$C = 10^{(a_0 + a_1)} \times R$	log(R _{rs} 443>R _{rs}	[0.366, -3.067, 1.93,
(O'Reilly	cubic	$+a_2 \times R^2 + a_3 \times R^3$)	490>	0.649,
et. al.,		+ a ₄	R _{rs} 510	-0.532]
2000)			/R _{rs} 555)	
CZCS-	Modified	C = 10^((a ₀ + a ₁ R+	log (Lw[N]443	Coefficients when
pigment	cubic	$a_2 \times R^2 + a_3 \times R^3 + a_4)/e)$	/ Lw[N]551)	R> 0.7368 are:
(Clark,				a = [-1.4443, 1.4947,
1997)				-1.5283, -0.0433, 1] Coefficients when
				R<0.7368 are:
				a = [-5.0511, 2.8952,
				-0.5069, -0.1126, 1]

Analytical Reflectance Inversion Algorithm

$$R = G \frac{b_{b \; water} + b_{b \; plankton}}{a_{water} + a_{plankton} + a_{gelbstoff} + b_{b \; water} + b_{b \; plankton}}$$

SPECTRAL SIGNATURES

NEED OF OCEAN COLOUR DATA

- **✓ Synoptic Scales of Pigments**
- ✓ Marine Fisheries
- ✓ Primary Production
- ✓ Carbon Budgeting
- ✓ Small-Scale Processes
- ✓ River Plumes
- ✓ Phytoplankton Blooms
- ✓ Coastal Upwelling
- ✓ Coastal Bathymetry
- **✓ ENSO Monitoring**
- ✓ Aerosol / Cloud optical properties
- ✓ Oils Spills / Ship wake studies

SENSOR REQUIREMENT

- More no. of spectral bands in visible region
- ✓ More no. of bands for atmospheric correction
- ✓ Narrow spectral band width
- √ S/N Ratio should be high
- ✓ High quantization levels
- ✓ Regular calibration of sensor
- ✓ Spatial resolution should be less than 1KM
- ✓ Observation time should be noon to avoid specular reflection and low level clouds

NEED OF OCEAN COLOUR DATA

- **✓ Synoptic Scales of Pigments**
- ✓ Marine Fisheries
- ✓ Primary Production
- ✓ Carbon Budgeting
- ✓ Small-Scale Processes
- ✓ River Plumes
- ✓ Phytoplankton Blooms
- ✓ Coastal Upwelling
- ✓ Coastal Bathymetry
- **✓ ENSO Monitoring**
- ✓ Aerosol / Cloud optical properties
- ✓ Oils Spills / Ship wake studies

NEED OF OCEAN COLOUR DATA

- **✓** Synoptic Scales of Pigments
- ✓ Marine Fisheries
- ✓ Primary Production
- ✓ Carbon Budgeting
- ✓ Small-Scale Processes
- ✓ River Plumes
- ✓ Phytoplankton Blooms
- ✓ Coastal Upwelling
- ✓ Coastal Bathymetry
- **✓ ENSO Monitoring**
- ✓ Aerosol / Cloud optical properties
- ✓ Oils Spills / Ship wake studies

REMOTE SENSING OF OCEAN COLOR

- ✓ Locates and enables monitoring of regions of high and low bio-activity.
- ✓ Food (phytoplankton associated with chlorophyll)
- ✓ Climate (phytoplankton possible CO₂ sink)
- ✓ Reveals ocean current structure and behavior.
- ✓ Seasonal influences
- ✓ River and Estuary influences
- ✓ Boundary currents
- ✓ Reveals Anthropogenic influences (pollution)
- ✓ Remote sensing reveals large and small scale structures that are very difficult to observe from the surface.

Requirement s for Retrieval of parameters from Ocean colour sensors

- Atmospheric correction algorithm
- Normalized Water leaving Radiance (L_{wn})
- Global / Local Bio optical algorithm

Validation

- Insitu Optical measurements
- Insitu oceanic parameters
- Measurements of Aerosols

What is Bio-Optical algorithm?

This is a empirical / semi-empirical.

NEED OF BIO-OPTICAL ALGORITHM

- Estimation of ocean Bio-geochemical parameters using in-situ observed radiance field.
- Bio-optical algorithm is required to retrieve different Oceanic parameters using water leaving radiance derived from satellite Data incorporating reliable atmospheric correction models.

Several algorithms are available operationally, but a regional Bio-optical algorithm is required for Indian waters.

DIFFERENT FUNCTIONAL / EMPERICAL ALGORITHMS

POWER

 $C13 = 10^{(a0+a1*R1)} R1 = Log(Lwn443/Lwn550)$ Evans and Gordon 1994

HYPERBOLIC + POWER

$$C_21 = EXP(a0 + a1*Ln(R)) R = Lwn490/Lwn555$$

 $C_23 = (R + a2)/(a3 + a4*R) a = [0.464, -1.989, -5.29, 0.719, -4.23]$

MULTIPLE REGRESSION

$$C+P=10^{(a0+a1*R1+a2*R2)}R1 = Log(Lwn443/Lwn520)R2 = Log(Lwn490/Lwn520)a = [0.19535, -2.079, -3.497]$$

CUBIC

$$C=10^{(a0 + a1*R + a2*R^2 + a3*R^3)} R = Log(Rrs443/Rrs565)$$

 $a = [0.438, -2.114, 0.916, -0.851]$

CUBIC POLYNOMIAL

$$C=10^{(a0 + a1*R + a2*R^2 + a3*R^3)} + a4R = Log(Rrs490/Rrs555)$$

 $a = [0.341, -3.001, 2.811, -2.041, -0.040]$

OC2 modified cubic Polynomial

$$C=10 (a0+a1*R+a2*R^2+a3*R^3) + a4$$

Where R=log(Rrs490/Rrs555)

OC4 modified cubic Polynomial

$$C=10 (a0+a1*R+a2*R^2+a3*R^3) + a4$$

Where R=log((Rrs443>Rrs490>Rrs510)/Rrs555

THANK YOU