

Importance of Biogeochemistry in Biological Oceanography

M. DILEEP KUMAR
National Institute of Oceanography
Dona Paula, Goa 403 004

Understanding Biogeochemistry

How did BGC begin? Origin of Earth: 4.5 x 10⁹ years ago

Primitive air: N₂, H₂O, CO₂, H₂, H₂S

Life: 3.5 x 10⁹ years ago Photosynthesis $2H_2S + CO_2 = (CH_2O) + 2S^o + H_2O$ $CO_2 + H_2O = (CH_2O) + O_2$

Present air: N₂, O₂
diverse life sustaining planet !!!

Ocean Biogeochemical Cycle

Global Primary production

Behrenfeld and Falkowski, 1997

Synthesis of Organic matter

$$CO_2 + H_2O + Energy + Nutrients$$

= Organic matter + O_2

Photosynthesis

$$CO_2 + H_2O + Energy = CH_2O + O_2$$

Abundant in the ocean are CO₂ and water.

WHAT LIMITS THE SYNTHESIS OF ORGANIC MATTER? **Nutrients**

What are these nutrients?

Essential ingredients in building materials required for cell functioning and bioenergetics

Nitrogen, phosphorus, silicon, Iron etc.

Nutrient uptake: Diffusion

molecules move from high to low concentrations

http://dusk.geo.orst.edu/oceans/PPT/23.Product_Ecol10.ppt

Diffusion/Complexation/Scavenging/absorption

Speciation controls bioavailability of metals

Quality & quantity of resource matters!

Relative availability of N, P and Si facilitates dominanance of certain groups of primary producers in the surface ocean

C:N:P = 106:16:1

...that determines the nature and variety of the following food chain...

N and Si are the most competing in determining the dominant groups of primary producers

Nutrient Dominant Group(s)

N & P Chl-a producing

DON Cyanobacteria, dinoflagellates

N Cyanobacteria

Si Diatoms

Figure 14.14

Trophic level efficiency varies among (a) upwelling areas, (b) coastal regions, and (c) the open ocean. The number of trophic levels and the level at which humans harvest differs with location.

How is 90% energy lost between trophic levels?

Quality & quantity of resource matters!

Key role of microbes in ocean carbon turnover

Carbon fixing cyanobacteria

to

Organic Carbon decomposing heterotrophs

Loss of Organic Matter from ocean

Sinking material fluxes

SINKING	FLUXES	IN DEEP WA	ATERS
	Org -C	CO3-C	Lithogenic
ARABIAN SEA (NAIR et al., 1989)			
WEST (60°,30'E)	1.80	2.28	2.64
CENTRAL (64,45'E)	1.53	2.10	3.05
EAST (68° 45'E)	1.56	1.43	5.40
BAY OF BENGAL			
NORTH (17°26'N)	2.65	1.29	27.96
CENTRAL (13°09'N)	2.61	2.03	14.70
SOUTH (04° 26'N)	2.04	2.22	8.56

Transparent and mineral particles

Monsoon forcing: North Indian Ocean

Different river discharges

Sea-to-air fluxes of carbon dioxide

Changing Environment and shifting Ecosystems

Oxygen deficiency
Facilitates
Noctiluca
Blooms!

Threat to
Fishery
resources
along west
coast of India?

Gomes et al. (2014) Nature Comm.

Global Temperatures vs Atmospheric CO2 vs CO2 Emissions by Humans

– Last 1000 Years

Thank You!