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Scatter Plots of Data with Various
Correlation Coefficients
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Linear regression

In correlation, the two variables are treated as equals.  In
regression, one variable is considered independent (=predictor)
variable (X) and the other the dependent (=outcome) variable Y.

Prediction

If you know something about X, this knowledge helps you predict
something about Y.



Uses of Regression Analysis

 Regression analysis serves Three major purposes.

1.Description
2.Control
3.Prediction

 The several purposes of regression analysis frequently
overlap in practice
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What is “Linear”?
 Remember this:
 Y=mX+B?
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What’s Slope?

A slope of 2 means that every 1-unit change in X yields a
2-unit change in Y.



Predicted value for an individual…

+ random errori

Follows a normal
distribution

Fixed –
exactly
on the
line
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Follows a normal
distribution

Fixed –
exactly
on the
line

 The values of the regression parameters b0, and b1 are
not known. We estimate them from data.



Regression Line
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 We will write an estimated regression line based on
sample data as

 The method of least squares chooses the values for b0,
and b1 to minimize the sum of squared errors
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Minimise the sum of square of errors
 Using Calculus

 Solve for b0, and b1 to get the position of the line
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The Fit Parameters
Define sums of squares:

The quality of fit is parameterized by r2 the correlation coefficient
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Estimation of Mean Response
 Fitted regression line can be used to estimate the

mean value of y for a given value of x.

 Example
 The weekly advertising expenditure (x) and weekly sales

(y) are presented in the following table.
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 Example
 The weekly advertising expenditure (x) and weekly sales

(y) are presented in the following table.

y x
1250 41
1380 54
1425 63
1425 54
1450 48
1300 46
1400 62
1510 61
1575 64
1650 71



Point Estimation of Mean Response
 From previous table we have:

 The least squares estimates of the regression coefficients
are:
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Point Estimation of Mean Response
 The estimated regression function is:

 This means that if the weekly advertising expenditure is
increased by $1 we would expect the weekly sales to
increase by $10.8.

eExpenditur8.10828Sales
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Point Estimation of Mean Response

 Fitted values for the sample data are obtained by
substituting the x value into the estimated regression
function.
 For example if the advertising expenditure is $50,

then the estimated Sales is:

 This is called the point estimate (forecast) of the mean
response (sales).

 Fitted values for the sample data are obtained by
substituting the x value into the estimated regression
function.
 For example if the advertising expenditure is $50,

then the estimated Sales is:

 This is called the point estimate (forecast) of the mean
response (sales).
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Residual

 The difference between the observed value yi and the
corresponding fitted value

 Residuals are highly useful for studying whether a
given regression model is appropriate for the data at
hand.
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Example: weekly advertising expenditure

y x y-hat Residual (e)
1250 41 1270.8 -20.8
1380 54 1411.2 -31.2
1425 63 1508.4 -83.4
1425 54 1411.2 13.8
1450 48 1346.4 103.6
1300 46 1324.8 -24.8
1400 62 1497.6 -97.6
1510 61 1486.8 23.2
1575 64 1519.2 55.8
1650 71 1594.8 55.2
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Regression Standard  Error
 Approximately 95% of the observations should fall within

plus/minus 2*standard error of the regression from the
regression line, which is also a quick approximation of a
95% prediction interval.

 For simple linear regression standard error is the square
root of the average squared residual.

 To estimate standard error, use

 s estimates the standard deviation of the error term  in the
statistical model for simple linear regression.
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The standard error of Y given X is the average variability around the regression
line at any given value of X.  It is assumed to be equal at all values of X.
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Regression Standard  Error

y x y-hat Residual (e) square(e)
1250 41 1270.8 -20.8 432.64
1380 54 1411.2 -31.2 973.44
1425 63 1508.4 -83.4 6955.56
1425 54 1411.2 13.8 190.44
1450 48 1346.4 103.6 10732.96
1300 46 1324.8 -24.8 615.04
1400 62 1497.6 -97.6 9525.76
1510 61 1486.8 23.2 538.24
1575 64 1519.2 55.8 3113.64
1650 71 1594.8 55.2 3047.04

y-hat = 828+10.8X total 36124.76

Sy.x 67.19818
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Analysis of Residual

 To examine whether the regression model is
appropriate for the data being analyzed, we can
check the residual plots.

 Residual plots are:
 Plot a histogram of the residuals
 Plot residuals against the fitted values.
 Plot residuals against the independent variable.
 Plot residuals over time if the data are  chronological.
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Residual plots

 The residuals should
have no systematic
pattern.
 The residual plot to right

shows a scatter of the
points with no
individual observations
or systematic change as
x increases.
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Residual plots

 The points in this
residual plot have a
curve pattern, so a
straight line fits poorly
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Residual plots

 The points in this plot
show more spread for
larger values of the
explanatory variable x,
so prediction will be less
accurate when x is large.
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ANOVA

 Analysis of variance (ANOVA) is a statistical technique that is
used to check if the means of two or more groups are
significantly different from each other.

 An ANOVA test is a way to find out if survey or experiment
results are significant.

 Compares the samples on the basis of their means
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