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Data Assimilation - Overview

Data Assimilation - Overview

Data Assimilation is the entire sequence of operations that, starting from the
observations and possibly from a statistical /dynamical knowledge about a system,
provides an estimate of its state

@ numerical weather & ocean prediction
@ hydrology

@ you name it...

Field
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Data Assimilation - Overview

Data Assimilation - Overview

Typical sources of information are:
@ observations (synoptic profiles, onboard measurements, remote sensing, etc...)
@ background field (climatological, short range forecast)

@ evolution dynamics (set of differential equations, numerical model ...)

All these information are combined in a statistical fashion to obtain the
best-possible estimate the analysis

07-Jan1973 12UTC Al data: 77098 observations

02-Aug-1987 12UTC Alldata: 550602 observations
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Data Assimilation - Methods

Data Assimilation Theory & Methods

1 - Data Assimilation Theory & Methods
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Data Assimilation - Methods Problem Statement

Basic Definitions and Problem Statement

OBJECTIVE:
estimate the state of an unknown system based on an imperfect model and
a limited set of noisy observations:

Xk = My(Xk—1) + e k=1,2,...,
yo = H(xi) + €8 k=1,2,..,

@ y° € RPand x € R" - p < n in realistic geophysical applications
) {tk}k=1,2... and {5z}k:1,2,., assumed to be random error sequences, white in time, and uncorrelated between them

@ Collect state estimates and observations as: X = {xq, X1, ..., X, } and Yg = {yg, y?, ...,yg}

Smoothing, Filtering or Prediction ?

0 Smoothing — Estimate the state at all times = X, based on Yg
@ Filtering — Sequential Estimate of the present state
e Prediction — Estimate the state at future times = x,~, based on Y?
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Data Assimilation - Methods Problem Statement

Probabilistic Approach

In the probabilistic framework, problems (1)-(2)-(3) are expressed as the
estimation of the corresponding conditional probability density functions:

© Smoothing — Estimate the state at all times = Xy based on Y2 —
P(Xk| YD)

@ Filtering — Sequential Estimate of the present state — P(xx|Y¢)

© Prediction — Estimate the state at future times = x,~; based on Y? —
P(xk>1Y7)

The PDFs P fully characterise the estimation problem!

The error PDFs associated to all the information sources read:
® P(x¢) PDF of the initial conditions - Prior/Background
® P(uk) = P(xk — Mi(xk-1)) = P(xx|xk—-1) - Model Error PDF
@ P(e9) = P(y? — H(xk)) = P(yk|x«) - Observational Error PDF
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Data Assimilation - Methods Problem Statement

Probabilistic Approach

With Bayes's rules....
SMOOTHING

P(Xi|Y?) oc P(xo) M P(xi — Mi(xi—1))P(y? — H(x;))
FILTERING

@ The Bayesian framework ideally solves the inference problem BUT it is hardly affordable in
geoscience

@ The Particle Filter attempts to solve this problem and its potential application in
geoscience has received much attention in recent years. See van Leuween, 2009 (MWR)
for a review of PF in Geosciences. | will take this point later ...
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Data Assimilation - Methods Variational Assimilation

A Gaussian World: 4D-Variational Assimilation

Under Gaussian assumptions things turn much easier = PDFs are described with
only MEAN and COVARIANCE

Initial condition, observational and model errors are all Gaussian and mutually
uncorrelated =—> solving the SMOOTHING problem leads to the 4DVar
formulation, i.e. minimise a penalty function as:

2J = Zu, (P™);~ u,+Z[y, N7 Ry —H (x)]+(x0—xb) T (P) " (x0—xb)

@ P’ - Background error covariance matrix
@ R - Observational error covariance matrix

@ P™ - Model error covariance matrix
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Data Assimilation - Methods Variational Assimilation

4D-Variational Assimilation - Some Facts

@ The sequence (trajectory) Xy which minimizes J is the maximum likelihood estimator of the PDF P(Xk\Yg)

@ It provides the "best” possible fit to the observations, given the initial guess and the imperfect model

@ The strong-constraint 4DVar makes the assumption of perfect model and the latter is appended as a strong-constraint
when doing the minimization

@ The minimization of J can be done in principle by solving the associated Euler-Lagrange (EL) equations (Le Dimet and
Talagrand, 1986 Tellus)

@ The Method of Representer is an efficient way to solve the EL eqs for linear dynamics (Bennett, 1982, chapter 5)

@ Descent Methods are used in the case of large nonlinear systems (Talagrand and Courtier, 1987 QJRMS)

@ The choice of the Control Variable defines the size of the problem to be solved and characterises different formulations
of the 4DVar (see e.g. Trémolet, 2006; Bocquet, 2009)

@ Pis implicitly evolved within the assimilation window but it is not available for the next analysis cycle

@ When observations are assimilated (as they were) at the same time the 3DVar is recovered

@ 4DVar (under "strong” simplified assumptions) is operational in several weather services, among them MetOffice,

ECMWEF and Meteo France.
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Data Assimilation - Methods Sequential Assimilation

A Gaussian World: The Kalman Filter

Under the same hypotheses of Gaussianity and mutual uncorrelation of errors the
filtering problem reduces to the estimation of the mean and covariance.

Forecast:

f_ f
X = Mx; _; + o

f _ a T m /
Py = MkPk—le +P k Time Updae Measurement Update
Analysis: i

— f f K /

K =X+ Ky [y2 — ()]

2 =1 — KcH, P/,

x2 /P2 - Analysis state/covariance at time t
xf /P! - Forecast state/covariance at time t,
Kalman gain matrix K = PTHT[HPfHT 4+ R] !

The analysis x? is optimal in the sense that it minimizes the analysis error variance

When all errors are Gaussian the minimum variance estimate is also the maximum
likelihood estimate (out of unimodality maximum likelihood estimators are of questionable
relevance)
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Data Assimilation - Methods Sequential Assimilation

Kalman Filter (KF) and Extended KF (EKF)

For linear dynamics and observational operator the KF provides a closed set of
estimation equations (Kalman, 1960).

Extension to nonlinear dynamics - Extended Kalman Filter

The extended Kalman Filter (EKF) is a first order approximation of the KF

The tangent linear model is used to forward propagate the forecast uncertainty (i.e. the error covariance)
The full nonlinear model is used to evolve the state estimate

The analysis update is the same as in the standard KF

The introduction of the EKF in geoscience is due to Ghil and Malanotte-Rizzoli (1991) AdvGeohys

The EKF response to different degree of nonlinearity has been studied in Miller, Ghil & Gauthiez (1994) JAS
The EKF is almost-operational for ECMWF soil analysis (e.g. de Rosnay et al., 2012 QJRMS)
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Data Assimilation - Methods Sequential Assimilation

Ensemble Based Data Assimilation Algorithms

In the ensemble-based DA the forecast/analysis error covariances are

approximated using an ensemble of M model trajectories
see e.g. Evensen, 2009

Forecast Analysis Forecast 4a

Ensemble based covariances Pf@ = 71 Z 1(x; foa _ )_(',“’)(x:.f‘a —xMHaT

In Geoscience M < n

Flow dependent description of the forecast error

Provide automatically a set of initial conditions for ensemble prediction schemes.

The forecast-analysis transformation characterises the ensemble-based algorithms (Deterministic vs Stochastic).

6606 ¢
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Data Assimilation - Methods Sequential Assimilation

Stochastic or Deterministic ?

Ensemble data assimilation algorithms can be divided into Stochastic and
Deterministic

Stochastic (Monte-Carlo approach)
@ In this class of algorithms the observations are treated as a random ensemble by adding noise at each analysis update

@ Each ensemble trajectory assimilates a different realization of the observation vector and undergoes an independent
analysis update

@ The standard Ensemble Kalman Filter (EnKF) belongs to this family (see e.g. Houtekamer and Mitchell, 1998 MWR)

@ The EnKF has proved efficiency in a number of geophysical applications (see Evensen, 2003 Ocean Dyn for a review)

Deterministic (Square-Root approach)

@ In this class of algorithms the step P’ — P? is made through a linear transformation T
It avoids the introduction of extra noise at the analysis update

T is usually defined under the constraint that P? matches some desired value (i.e. the EKF one, the Hessian of a

o
o
penalty function)
*}
o

The solution (a square-root matrix) is not unique and the particular choice characterises the algorithm (see Tippet et
al., 2003 MWR).

Algorithms belonging to this family: ETKF, LETKF, EnSRF, MLEF (see Whitaker and Hamill, 2002 MWR; Bishop et
al., 2001 MWR; Hunt et al., 2007 Physica D)
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Data Assimilation - Methods Sequential Assimilation

Ensemble-based or Variational: the comparison

@ Results with a Quasi-Geostrophic model by Rotunno and Bao, 1996
@ Ensemble-based scheme = Local Ensemble Transform Kalman Filter (Hunt et al., 2007 Physica D)

ound (left) & Analys ) error in COLOR
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(b) Analysis error (3DVar)
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(o) Background error (4DV1iZ2H)

Forecast time (day)

From Yang, Corazza, Carrassi, Kalnay & Miyoshi and Kalnay, 2009
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Dealing with Geophysical Systems

Dealing with Geophysical Systems

When dealing with realistic Atmosphere/Ocean dynamics DA faces a number of obstacles....

@ The Atmosphere and the Ocean are example of nonlinear chaotic systems =
Flow-dependent description of the estimation error (EnKF, MLEF, AUS ...)

@ Sources of nonlinearities: model M, obs operator H, first guess B. Nonlinearities "push
out” of Gaussianity = Non-Gaussian analysis framework (see e.g. Fletcher and Zupanski,
2006 QJRMS and Bocquet et al., 2010 MWR)

@ Models are not perfect - incorrect parametrizations of physical processes, numerical
discretizations, unresolved scales, etc..

@ Data Assimilation in geoscience is a Big Data problem = Computationally suitable
solutions (see Fisher talk at WMO-DA Symposium 2013)

@ Some physical quantities are bounded distributed = Adapt Gaussian methods to
incorporate observations with limited range (Anamorphosis, Bertino XXX; See Abhiskek
Shah poster !)

% How Ensemble and Variational Methods have dealt with these issues ?

2 Control of Chaos =

8 Model Error =
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Dealing with Geophysical Systems
Dealing with Geophysical Systems

2 How data assimilation methods have dealt with the
special problems encountered in Geosciences

2.1 - Variational Methods Adaptation

2.2 - Ensemble Methods Adaptation

2.3 - DA for chaotic systems

2.4 - DA with imperfect models - Treatment of model error in DA
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Dealing with Geophysical Systems Dealing with Geophysical Systems — Variational

How to deal with geophysical systems: Variational

Main Drawbacks of Variational Approach:

0 Non-Quadratic cost-function in 4DVar

@ with possible Multiple Minima

e maximum likelihood approach questionable

Q No flow-dependent error description
Proposed Solutions:

@ Problem (1) and (2) are alleviated in the Incremental 4DVar (Courtier et al., 1994 QJRMS).

EEE

7 ————> High resolution nonlinear trajectory
i i i i I
Sen) | ~ pc;‘mm al=y=Hm) | ' (o)
s v v ¥ [ ]
H =0 Trajectory
& {
8 [] § 7
g Low resolution Linear model — 7
E Low resolution adjoint model — v
Iterative minimisation algorithm
Zepr =2+ 51 (m)
&g — - - —>  High resolution nonlinear forecast

From Andersson et al., 2005 ECMWF-Tech.Rep. 479
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Dealing with Geophysical Systems Dealing with Geophysical Systems — Variational

How to deal with geophysical systems: Variational

Problem (4) is implicitly overcome with the Long Window 4DVar but ... problems (1)-(3) can be made worst

Problems (1)-(3) are partly solved using the Weak-Constraint 4DVar but ... appropriate model error covariances need to
be prescribed and the size of the control variable too big (see e.g. Trémolet, 2006; Carrassi and Vannitsem, 2010)
Hybrid 3/4DVar-Ensemble algorithms attempt to tackle all problems at the same time (see Barker and Clayton, 2011
ECMWF Ann. Seminar for a review and for details on the operational implementation at MetOffice).

Example: ETKF <> 4DVar at MetOffice (from Barker and Clayton, 2011 ECMWF Ann. Seminar)

Two hybrid strategies:

- Hybrid 4DVar operational at MetOffice (Use a combination of static and ensemble cov at the initial time)
- 4D-Ensemble-Var mid-long term development (Use ensemble cov within the entire assimilation window = No need for
Tangent/Adjoint model) See Buehner et al., 2010 MWR

@) Traditional 4D-Var | PF—=

Static B

(b) Hybrid 4D-Var I PF—

t
Emm}blc#%;%j %7;E ),jg
} } 4 I ‘ | \

(c) 4D-Ensemble-Var

From Barker and Clayton, 2011 ECMWF Ann. Seminar
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Dealing with Geophysical Systems Dealing with Geophysical Systems — Ensemble Schemes

How to deal with geophysical systems: Ensemble Schemes

Main Drawbacks of Ensemble Based Approach:

o Sampling Error (M O(100))

e Use only observations at analysis time

g Only the Gaussian approximation of the flow-dependent P’ is accounted for at the analysis update

Proposed Solutions:

Alberto Carrassi (NERSC) Indo-Norwegian Winter School on Oceanogr 17" October 2016

Sampling errors (problem (1)) are mitigated using Covariance Localization = Effective increase the rank of P but:

- dynamical consistency is broken

- the actual optimal size for the localization is time-dependent = Flow-Dependent Covariance Localization (Bishop and
Hodyss, 2011)

Variance Underestimation (still problem (1)) = Multiplicative or Additive Inflation

Multiplicative Inflation (See e.g. Anderson and Anderson, 1999 MWR):

-Pf = (1+ a)Pf

- keep the same rank/structure of Pf, only the explained variance is modified

- the inflation can be made adaptive <> more inflation where/when required: based on Kalman gain (Sacher and
Bartello, 2008 MWR), on analysis error variance (Whitaker and Hamill, 2012 MWR)

Additive Inflation:

- add random noise to P/ or P?

- the process introduce new structures in the error space spanned by the ensemble covariances

- a combined additive/multiplicative scheme has been proposed by Zhang et al., 2004 MWR

- an ensemble based algorithm without the need of inflation has been proposed recently (Bocquet, 2011 NPG)

An Hybrid approach is used to deal with problem (2) =- Several ensemble schemes introduce the time dimension to
assimilate observations simultaneously over a given reference period (see e.g. Hunt et al., 2004 Tellus; Sakov et al.,
2010 Tellus)

Solution to problem (3) = Particle Filters but ...




Dealing with Geophysical Systems DA for chaotic systems

DA for chaotic dynamics

A data assimilation method explicitly designed for chaotic systems...

Assimilation in the Unstable Subspace < Confine the analysis correction
in the unstable subspace

@ The growth of the initial uncertainty strongly projects on the unstable manifold of the
forecast model.

@ The AUS approach consists in confining the analysis update in the subspace spanned by
the leading unstable directions E; the analysis solution reads:

x* =x? + EFTETHT (R + HEFETHT)~1(y° — Hx?)

@ While all assimilation methods, more or less implicitly, exert some control on the flow
dependent instabilities, AUS exploits the unstable subspace, as key dynamical information
in the assimilation process.

@ Applications to atmospheric and oceanic models showed that even dealing with

high-dimensional systems, an efficient error control can be obtained by monitoring only a
limited number of unstable directions. (See Palatella, Carrassi, Trevisan, 2013 J. Phys. A)
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Dealing with Geophysical Systems DA for chaotic systems

AUS and Target Observations

TARGET OBSERVATION STRATEGY: Breeding on the Data Assimilation System BDAS

o Quasi-geostrophic atmospheric
model (Rotunno and Bao, 1996

MWR) [[_Experiment | Ocean Obs Type/Positioning/Assimilation [ RMS Error ]|
@ Perfect model setup - Observation LO - 0.462
Dense area (1-20 Longitude) - FO vert.Prof/fixed(in the max(err))/3DVar 0.338
Target Area, one obs between RO vert.Prof /random /3DVar 0.311
21-64 Longitude 3DVar-BDAS vert.Prof/BDAS /3DVar 0.184
AUS-BDAS temp.1-Level/BDAS/AUS 0.060

Single Target.

/Obstmﬁoﬂ

Carrassi et al., 2007 Tellus
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Dealing with Geophysical Systems DA for chaotic systems

DA as a nonlinear stability problem

Can efficient DA methods be constructed to achieve the asymptotic stabilization
of the system 7

03 0 Free
—— 3DVar

025 . -0 3DVar-BDAS
—O- AUS-BDAS

=)

Lyapunov exponents A, (day ™)
s
o
a

-0.1
-0.15

-0.2

adapted from Carrassi, Ghil, Trevisan & Uboldi, 2008 CHAOS

@ DA provides a stabilizing effect (compare 3DVar with free system Lyapunov spectrum) but ...
@ if the DA is designed to kill the instabilities, the estimation error is efficiently reduced
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Dealing with Geophysical Systems DA for chaotic systems

Hybrid 3DVar - AUS

Enhancing the performance of a 3DVar by using AUS
Comparison with EnKF

0.7

0.6

o o °
@ Y @

normalized RMS analysis error

e
N

0.1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
days

adapted from Carrassi, Trevisan, Descamps, Talagrand & Uboldi, 2008 NPG

@ A network of randomly distributed obs (vertical soundings)

@ 3DVar-AUS: (1) AUS assimilate the obs able to control an unstable mode; (2) 3DVar process the remaining obs

@ 3DVar-AUS comparable to EnKF with only one BDAS mode => Reduced computational cost and implementation on a
pre-existing 3DVar scheme
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Dealing with Geophysical Systems Treatment of Model Error in DA

controlling errors: what about model error ?

In the past, model error has been considered small with respect to the (growth of) initial
condition error, and thus often neglected

Nowadays model error is recognized as a main source of uncertainty in NWP, seasonal and
climate prediction
@ In DA for NWP the presence of model error may cause underestimation of the variance
(inflation ...)
@ On seasonal to climatic timescales model error becomes more evident, through the
emergence of biases

SST bias - fest year 14 - 23. ECMWEF IFS model coupled with NEMO ocean model.
Adapted from Magnusson et al., 2012
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Dealing with Geophysical Systems Treatment of Model Error in DA

controlling errors: what about model error ?

Fundamental problems making difficult an adequate treatment of model
error in data assimilation:

@ large variety of possible error sources (incorrect parametrizations of
physical processes, numerical discretizations, unresolved scales, etc..)

@ the amount of available data insufficient to realistically describe the
model error statistics

@ lack of a general framework for model error dynamics

OBJECTIVES

O Identifying some general laws for the evolution of the model error
dynamics (with suitable application-oriented approximations)

© Use of these dynamical laws to prescribe the model error statistics
required by DA algorithms
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Dealing with Geophysical Systems Treatment of Model Error in DA

Formulation

Let assume to have the model:

dx(t)
dt

used to describe the true process:

d):f(tt) = F(%,9,\) + e&(%,9,\)
dy(t) oo .
L — h(%,9, )
™ (X,¥,X)

o 2(x,¥, )\/) represents the dynamics associated to extra processes not
accounted for by the model;
° /3(9(,9,)() - unresolved scale
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Dealing with Geophysical Systems Treatment of Model Error in DA

Mean Error & Covariance

@ the model does not describe the scale given by E(i,y,)\/)

@ the correlation between i.c. and model error neglected (standard hyp. in DA)
Mean Estimation error evolution in the resolved scale
t ~
< 0x(t) >=< x(t) — %(t) >=< dxp > +/ dr < f(x,A) — f(X,§,\) >

to

Evolution of the estimation error covariance in the resolved scale
t t , R R
P(t) =< dxotx] >+ [ dr [ dr’ < [xN) = FGI N N) - 5 0] >
to to
@ the important factor controlling the evolution is the difference between the
velocity fields f(x, \) — f(X,¥, \)
These covariance and correlations are exactly what we need in DA !

These equations are NOT suitable for realistic geophysical applications -
Some approximation is required
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Dealing with Geophysical Systems Treatment of Model Error in DA

Short Time Approximation

@ the contribution f(x,\) — £(&, ¥, \) is treated as a deterministic process

@ the short time evolution of dx(t) and P(t) read:

ox(t) =< [f(x, \) — F(X)] > t + O(2)
P(t) =< 0xp0xq > + < [f(x,\) — F(%,9, M][F(x, A) — F(%,§,\)]T > t? + O(3)

@ the important factor controlling the evolution is the difference between the
velocity fields f(x, \) — f(X,¥, \)

@ if the term f(x, \) — F(,§, \) were delta-correlated the short-time evolution
is bound to be linear

Carrassi et al., 2008 & Carrassi and Vannitsem, 2011
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Dealing with Geophysical Systems Treatment of Model Error in DA

DA in the presence of model error

Error of Unresolved Scales = P™ ~< (f — f)(f — I?)T > 72

...needs to estimate the statistics of the vel. fields discrepancy.

Solution proposed:

@ Use of the analysis increments of a reanalysis data-set :

» dx dx  xE(t+7) —x2(t) x4+ 1) —xi(t) _ 0x7

f—f=——-——= =—
dt  dt T T o
_ T _ - 72
< 6x(1) >~ by =< 0xI > = P7(t) =~ P™(t) =< 6x30x}" > —
r r

@ 7, reanalysis assimilation interval

@ 7 current assimilation interval
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Dealing with Geophysical Systems Treatment of Model Error in DA

Testing the approximation

Lorenz (1996) with two scales (large scale - x; small scale - y)

10
dx; hc .
L= (X1 — Xi—2)Xi—1 — X; + F — — E Yj,is i={1,..,36}
dt b=
dy; i hc i
# = —cbyji1,i(yjt2,i — Yj—1,i) — o¥j,i + 5 Jj=11,..,10}

7 = 0.005 7 =0.01 7 =0.015

08 =0.765 08 =0.755 O3 =754
_02 _02 _o02
< by by
0.1 0.1 0.1
-05 ) 05 -0.5 ) 05 -05 o 0.5
@ @ .-
T =0.02 T =0.025 T =0.05
J=0.746 J = 0.749 J=0.739
_02] _ 02| _0.2]
< by <
0.1 A 0.1 0.1
-05 o 05 -0.5 o 05 -05 o 0.5

PDF of §x? for an observed (green) and unobserved (red) component, as well as the true model error PDF (blue), for different
forecast lengths 7. J-values - joint probability between the true model error PDF and unobserved (Sxf.
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Dealing with Geophysical Systems Treatment of Model Error in DA

Testing the approximation

o 2 =2 2
> N @ i

e o
i

01 ," —True
- - - Estimated

5 10 15 20 25 30 35

=
Proportion of variance explained

(a): True (left) and estimated (right) Pp.
(b): Proportion of the variance explained as a function of eigenvalue number for the true and
estimated covariances.
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Dealing with Geophysical Systems Treatment of Model Error in DA

Short-Time Ensemble Transform Kalman Filter —

@ Standard ETKF with tuned localization & inflation:
Pl = (1+6)P 0 Q(r)
@ ETKF with Time Constant model error treatment (similar to ST-EKF) ETKF-TC:
x = x" — abp, Pf = (14 6)Pf 0 Q(r) + o®Pny
© ETKF with Time Varying model error treatment ETKF-TV:
f = M(x7; —Omi,j% 0ij € N(bm,Pm) i=1,..,k

Xij =

Skill as a function of Observational Error (left) & Ensemble Size (right)

! ——ETKF_TV
09 ZEme
0g) -

o

ag

o5

0a

03 T~ ]

Ts O an 50 &0 70
Ensemble size k

RMSE (chserved variables)

1
Observational noise R

From Mitchell & Carrassi 2015
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Dealing with Geophysical Systems Treatment of Model Error in DA

- Parameter Estimation in Soil Model

Land Surface model ISBA (Mahfouf and Noilhan, 1996)

State Variables: soil temperature (Ts and Tp) and moisture content (wg and w»).
Observations of screen-level variables (temperature and humidity at 2 meter)
Parametric error in the Leaf Area Index (LAl) and Albedo

Comparison between EKF and ST-AEKF

[~ ]

RMS Error
RMS Error

5. 5
&% oot 5%
2 g o005 2E
& o) & 0
(S 30 60 90 ) 30 60 90
day day
Leaf Area Index Albedo
0.32 _
g 031 2 0.04
S o3 5 0.035
S Eo2 = o.03
o o
0 30 60 90 00255 30 60 90
day day

Carrassi et al., 2012
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Dealing with Geophysical Systems Treatment of Model Error in DA

4DVar in the presence of model error -

@ assimilate observations distributed over the time window 7T
@ analysis state as the minimum of a cost-function:

M
T T
2J:/ /(5xg)T(Pm);}2(5xg)dt1dt2+ZekTR;1ek+e[B—1eb
0 0 k=1

Estimate model error covariances/correlations using
P(t1,t2) = Q(t1 — to)(t2 — to)
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Dealing with Geophysical Systems Treatment of Model Error in DA

DA and Model Error -

Correlated vs Uncorellated Model Error

Lorenz 3-variable (1963) system
Strong-constraint = Model Assumed Perfect !

Weak constraint 4DVar with uncorrelated model error P” = aB (blue) = Model Err Uncorrelated; Mod Err
Covariance scaled as Background Cov

Weak constraint 4DVar with uncorrelated model error P" = Q(t — t9)? (red marks) = Model Err Uncorrelated;
Mod Err Covariance quadratic in time

e 6 o060

Short-time weak constraint 4DVar =- Model err as a fully-corr process

AR = 10%

o.
—
o
= 0.2 ]
D
=
=
[
=
=
<
>
=
& oo
D
e
o
107 107° 107" 10° 10’ 10° 10°

Carrassi & Vannitsem, 2010
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Operational Data Assimilation - An Example
Operational Data Assimilation

3 Operational Data Assimilation - The TOPAZ system at
NERSC
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Operational Data Assimilation - An Example

Operational Ocean Prediction with EnKF at NERSC

* 3D numerical ocean model

— Hybrid Coordinate Ocean
model, HYCOM (U. Miami)

* Hybrid vertical coordinate
— lIsopycnal in the interior
— Z-coordinate at the surface
— TOPAZ4 uses 28 layers
¢ Coupling to sea ice model
— EVP dynamics ...
— Semtner Thermodynamics
* Data assimilation:
— EnKF (probabilistic) ...

Alberto Carrassi (NERSC) Indo-Norwegian Winter School on Oceanogr 17" October 2016 38 /53



Operational Data Assimilation - An Example

Operational Ocean Prediction with EnKF at NERSC

* 3D variables
— Temperature
Salinity
Layer thickness (can be zero)
X-current
Y-current
* 2D variables
— Seaicearea
— Sea ice thickness
— Snow depths
— Barotropic currents + pressure
*  Typical grid size
— Horizontal: 800x880
~ Vertical: 28
— Total unknowns: ~1018
* Need to perform local analyses

[

I

Evensen 2002
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Operational Data Assimilation - An Example
Operational Ocean Prediction with EnKF at NERSC

* Ensemble Forecast * Analysis
* 2500 CPU hours / cycle * 20 CPU hours / update
* Embarrassingly parallel * 6 datasets simultaneously

* 100x 133 CPU 11 minjobs * One 20 CPU 1h job

* Each job requires 400 Mb * Memory required 1 Gb
— MPI parallelization — MPI parallelization

= HPC Machine:
= Cray XE6m, updated 2012

= 22272 cores, 205 Tflop/s
= 676 nodes (32-cores)
= 1-4 Gb per node
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Operational Data Assimilation - An Example

Operational Ocean Prediction with EnKF at NERSC - TOPAZ System

Layor: et Thincs » FOPAZS model el » 500 6 Tickewss [T moguat38id |
[y

Dasaima: 14 Aug 2092 { BE0D00 35) LTC iyt macne st T

* Exploited operationally at met.no
* Since 2008
* Ecosystem added in Jan. 2012
* 20 years reanalysis at NERSC
* Took 2 years to produce
* 3-years ecosystem reanalysis
* MyOcean (Arctic MFC)
* Free distribution of data

* Dynamical viewing (Godiva2)

* Data used by ECMWF wave
model (J. Bidlot)

* Seaice edge forecast
* Surface currents

testiroage Cioan i Sioocie Eart: Oy ey | 100% 5

o Oy SO 0 GG v o o

Ice thickness forecast for 14 Aug. 2012

Alberto Carrassi (NERSC) Indo-Norwegian Winter School on Oceanogr 17" October 2016 41 / 53



Operational Data Assimilation - An Example

Operational Ocean Prediction with EnKF at NERSC - TOPAZ System

* DEnKF, asynchronous SRF _ . /HHPTHTRT i
— 100 members — V t(HPPHTR-T) — ©  reduction
— Local analysis (~90 km radius) ARSI facter i
— Ensemble inflation by 1% "
* Observations: T
— Sea Level Anomalies (CLS) . & h
— S5T (NOAA, then UK Met) L &
— Sea Ice Concentr. (OSI-SAF) - 12

— Sea ice drift (CERSAT) 3% a,
— T/S profiles (Coriolis) P 3
— 400.000 observations per week
— ~100 in each local radius

| = g 2 Hoe
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Operational Data Assimilation - An Example

TOPAZ System - EnKF correlations SST

15% June 2008 ' : 24 Dec. 2008 I g
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Operational Data Assimilation - An Example

TOPAZ System - SST forecast in real time

Blas, Sea surface temperature vs. drifting buoy data, forecast day: &

w

=7 | = natantc « NodiciAvesc -0.37K)
— Norde Seas [0 30K

= Barents Sea (-0.44K)

Temperaturs bias (K)

RMS, Sea surface temperature vs. drifting buoy data, forecast day: 6

The system has a cold bias !
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Operational Data Assimilation - An Example

TOPAZ System - Reanalysis

Temperature Long~term Mean Difference
Period: 1991-2010, Depth: 100m

TOPAZ FREE - WOAZO13

‘Temperature Long~term Mean Diference
Period: 1991-2010, Depth: 300m

TOPAZ Reanalsis - WOA2013 TOPAZ FREE - WOAZ013

Ause 0357
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(some of) New Frontiers and Nowadays Challenges in DA

(some of ) New Frontiers and Nowadays Challenges in DA

4 (some of) New Frontiers and Nowadays Challenges in
DA

4.1 Seasonal-to-Decadal Predictions - s2d
4.2 Nonlinear/NonGaussian Methods — Particle Filters
4.3 Coupled Data Assimilation
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(some of) New Frontiers and Nowadays Challenges in DA~ Seasonal-to-Decadal Prediction

Seasonal-to-Decadal Predictions - S2D

Seasonal-to-Decadal is an optimal time window to prepare for:
@ disease treatment and mitigation
Q population move
© agricultural planning
Q energy policy

@ s2d prediction is both an initial and boundary condition problem

@ Longer Term Predictability rests on slow-varying components of the climate system (Soil
moisture, Snow cover and Sea-ice, SST ...)

@ S2D are currently initialized using ad-hoc empirical methods: Full-Field or Anomaly
Initialization

@ DA is nowadays seen with much interest in this field to improve the initial condition
representation

Mult-Decadal to Contury.

Daily Weathe Seasonal to ~1 Yoar Decadal
Forecasts Pradictions Climate Change Projoctions

ime scalo

Initial Valu>
Problem

Forced Boundary
Condition Problem

Mechl ctal. (2009)
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(some of) New Frontiers and Nowadays Challenges in DA~ Seasonal-to-Decadal Prediction

Nudging Experiments with Ec-Earth climate model

)
)
)
)
'3
)

NUDGING is a practical /empirical DA method based on adding a forcing term to the prognostic
equations:% = F(x) + HTN(y°* — Hx)
Root Mean Square Skill Score (RMSSS) of the ensemble-mean near surface temperature (left) and SST (right)
anomalies
Observations used for Nudging: Ocean Temperature & Salinity (from NEMOVAR REANALYSIS)
_ RSME"dg
RMSSS = (1 — W)
New initialization methods based on DA have been proposed in Carrassi et al., 2014 NPG.
A study on the rationale behind the choice of anomaly vs full-field initialization can be found in Weber et al., 2015 MWR

RMSSS T2m RMSSS SST

I

GLONUDG

e | 10be | 140e

From Carrassi et al., 2016
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Seasonal-to-Decadal Prediction

(some of) New Frontiers and Nowadays Challenges in DA

S2D with NorESM and EnKF

RMSE calculated over the full model domain (averaged over the 10 prediction cycles)

Temperature [0-225 m]

2

=y

7]

=

~ Analysis Prediction

- -l -
[ — ] I po— i i N
2 4 6 8 10 12 14 16 18 20
Time (yr)

For all model variables at 1-year lead average; 2-5 lead year average
*Analyze reduction of RMSE in EnKF-S5T relative to Free
*Compare the improvements relative to Perfect

From Counillon et al. (2014) Tellus
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(some of) New Frontiers and Nowadays Challenges in DA Particle Filter

nd Gaussianity = Particle Filters (PF)

@ PF is a technique for implementing a recursive Bayesian filter by Monte
Carlo simulations (see Bain and Crisan 2008).

@ The state-estimate representation is afforded using an ensemble of members
(i.e. particles)

@ The analysis update is fully Bayesian and this makes PF particularly
accurate in nonlinear filtering

@ The key idea is to represent the required PDFs by a set of random samples
with associated weights and to compute estimates based on these samples
and weights:

N
Plxe) = Y wi 100 = xi0)  wic o wh_1 P(yZlxe)
i=1

@ The sampling is done using the principle of importance sampling and the
choice of the importance PDF plays a central role.

@ A common problem with PF is the degeneracy phenomenon, where after a
few iterations, all but a few particles will have negligible weight

Alberto Carrassi (NERSC) Indo-Norwegian Winter School on Oceanogr 17" October 2016 50 / 53



(some of) New Frontiers and Nowadays Challenges in DA Particle Filter

nd Gaussianity = Particle Filters (PF)

@ The brute force approach to reducing its effect is to use a very large
ensemble size (clearly impractical in geosciences).

@ Nowadays the future of PF in this domain relies on two other approaches:
(1) the good choice of importance density and (2) the use of resampling.

@ The proposal distribution represents our approximation of the unknown
filtering distribution.

@ A common choice is to use the prior PDF, the transition probability, since
this allows for a straightforward way to draw particles (they comes from the
model forward integration) and associated weights.

@ Significant advancements have been done recently toward a proposal density
that is closer to observations.

@ The basic idea of resampling is to eliminate particles that have small weights
and to concentrate on particles with large weights.

@ Successful application of the particle filter for the problem of past climate
reconstruction has been done using climate model of intermediate
complexity (Goose et al., 2012).
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(some of) New Frontiers and Nowadays Challenges in DA Coupled Data Assimilation

Coupled Data Assimilation

Scientific Challenge:

@ use Earth System Simulators (ESS) as the unified modelling instrument
across all forecast timescales from days to decades

® better exploit the new generation of Earth observations (Argo, SMOS ...)

@ improve the forecast capabilities of coupled phenomena (hurricanes, costal
weather, ENSO, MJO)

@ produce coupled reanalysis

@ reconstruct the climate of areas for which adequate measurements are still
unavailable

@ assessment of climate change in connection with external factors (detection
and attribution problem)
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(some of) New Frontiers and Nowadays Challenges in DA Coupled Data Assimilation

Coupled Data Assimilation

ate a

@ Decoupled DA in coupled system —— i.e. prediction are done using coupled atmosphere-ocean models where the ocean
is forced with a wind stress output of independent atmospheric data; the two components are then coupled and used to
make the prediction of interest.

@ this raises problems, particularly at the boundary between the ocean and the atmosphere, where unwanted dynamical
initial shocks can be introduced.

o Weakly-coupled DA —— i.e. the background field is obtained through the evolution of the full coupled model, but the
different model compartments are then subject to an independent analysis
First Attempts:
weakly coupled reanalysis at the NCEP (Saha et al., 2010) - marked improvement over the standard uncoupled DA in
recovering the MJO

4DVar a coupled global ocean-atmosphere model at JAMS Technology. Weather modes are considered as noise, and the
control variable includes the ocean i.c. plus a set of parameters of the sea-air fluxes (Sugiura et al., 2008).

At the ECMWF ocean and atmosphere are currently run separately (a 3DVar and 4DVar respectively) but research is
ongoing to weakly couple the two schemes.

The ensemble-based approach has been implemented at the GFDL (Zhang et al., 2005) using the EAKF.

0000
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