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But since our measurements and observations are nothing more than 
approximations to truth, the same must be true of all calculations resting 
upon them, and the highest aim of all computation made concerning 
concrete phenomena must be to approximate, as nearly as practicable to the 
truth. 

Gauss, 1809: Theoria Motus Corporum Coelestium
-1823: Theoria combinationis Observationum erroribus minimis
obnoxiae



Summary of Gauss’s idea

• Observations are approximate.
• Truth is not known.
• Model also has errors due to various reasons. 

What can data assimilation do ? 



Flowchart of Data Assimilation

Data Assimilation arrests model divergence.



DATA ASSIMILATION

Finding maximum likelihood
(using Bayes’ Theorem)

Minimize the cost function
( Least square approach )

WHAT IS BAYES’ THEOREM ?



Bayes’ Theorem

P(A|B) = Probability of finding A given B
P(B|A) = Probability of finding B given A
P(A) = Probability of A with no knowledge of B
P(B) = Probability of B with no knowledge of A.
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Did you ever bet on horses ? 

Probability of Bolt winning = 5/12 = 41.7%
Probability of Fleetfoot winning = 7/12 = 58.3%

Now let's add a new factor into the calculation. It turns out that on 3 of Bolt's 
previous 5 wins, it had rained heavily before the race. However, it had rained only once 
on any of the days that he lost. It appears, therefore, that Bolt is a horse who likes 
'soft going', as the bookies say. On the day of the race in question, it is raining.

Given this new information ( raining ), what is the probability of Bolt winning ? 

Total Number of Races 12

Fleetfloot winning 7

Bolt winning 5

Ref : http://www.kevinboone.net/bayes.html



It’s raining Not raining

Bolt winning 3 2

Bolt losing 1 6

What we need to know is the probability of Bolt winning, given that it is raining ?

Like any other probability, we calculate it by dividing the number of times something 
happened, by the number of times if could have happened. 
We know that Bolt won on 3 occasions on which it rained, and there were 4 
rainy days in total. 
So Bolt's probability of winning, given that it is now raining, is 3 / 4, or 0.75, or 75%.

This is important information if you plan to bet — if it is raining you should 
back Bolt; if it is not, you should back Fleetfoot. 

The probability shifts from 41.7% to 75%. 



Revisiting Bayes’ Theorem

p(A|B) = p(B|A) p(A) / p(B) 

P(A|B) = Probability of finding A given B
P(B|A) = Probability of finding B given A
P(A) = Probability of A with no knowledge of B
P(B) = Probability of B with no knowledge of A.

P(A|B) = Probability of Bolt winning when it rains 
P(B|A) = Probability of raining when Bolt wins = 3/5
P(A) = Probability of Bolt winning = 5/12
P(B) = Probability of raining = 4/12
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What are the error characteristics ? 

• Unbiased model and observation error i.e.,

• Model and observation error are uncorrelated i.e.,

• Non-trivial error covariances i.e.,    
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What is x ?

What is H ? 

What is y ? 

BASICS

What is B and R ? 
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the state x. 

B is Gaussian

R is Gaussian



The cost function is parabolic and the minimization is done 
using steepest descent. 



POPULAR DATA ASSIMILATION METHODS

• KALMAN FILTER  -- B evolves according to model dynamics.

• 3D VAR – B is stationary.

• 4D VAR – B evolves within the time window of cost function minimization. 

• ENSEMBLE BASED KALMAN FILTER -- B is estimated from the ensembles.



What is the relative significance of B & R ?
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Let’s estimate the temperature of Hyderabad. 
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Some more exercises 
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Suppose we observe a point in between two grid points. 
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Case 1: No cross-correlation between two grid points,             and   0 1
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The analysis at grid point 2 is equal to the background. Observation had no effect.



Case 2: 0   ,1  
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Now the solution at grid point 2 is influenced by the observation. The role of 
Background error covariance is to spread information from one grid point to the
other. 



PRACTICAL ISSUES

COVARIANCE INFLATION IS NECESSARY !!!

022

0

2

22

0

2

0 yxx
b

bb

b

a















b

a

b

a

b

xx

yx













0

0

0

  If

  If



Idea of Localization

Assimilating distant observations leads to spurious correlations 



PRACTICAL APPLICATIONS IN INCOIS



Validations and Comparisons were made with respect to both assimilated 

(dependent) variables and Independent variables
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OBSERVATIONS

Assimilated Variables 

1. In-situ Temperature

2. Salinity Profiles (RAMA moorings, NIOT buoys and Argo 
floats)

3.Sea surface temperature ( Satellite track data : AMRSE)

Independent 
Variables

1. Sea level anomaly

2. Sea Surface salinity 

3. U,V Currents
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Variable Assimilated Validation/Compariso

n

SST AMRSE satellite track 

data

AVHRR

SLA - AVISO

U V Currents - OSCAR, ADCP

Temperature In-situ profiles RAMA mooring, NIOT 

Buoys

Salinity In-situ profiles RAMA mooring, NIOT 

Buoys
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Model Domain and Observation Locations



27

Spatial distribution of assimilated T, S profiles
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Daily pop-up of Argo floats in the Northern Indian Ocean

ARGO 

FLOATS
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Temperature and Salinity Data 

availability ADCP Data availability
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Assimilated 

Observations



SST
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Standard Deviation of SST 

Correlation of SST with respect to AVHRR Data 



SST
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RMSE of SST with respect to AVHRR Data 

BIAS for SST with respect to AVHRR Data



Temperature
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Temporal evolution of water in 

subsurface layers simulated by 

LETKF-ROMS is in good 

agreement with observation in 

this location 

as well.

Time-depth section and Taylor Diagram for
temperature displaying various statistical
parameters
at RAMA Buoy Location (12S,80.5E)



TAKE HOME MESSAGE

• The truth is not known. 

• Neither observation nor model is devoid of errors. 

• Assimilate these two to get the best estimate. 

• Estimating maximum likelihood = Minimizing cost function. 

• The model error covariance propagates information from 
one place to another.

• Covariance inflation is necessary for Ensemble based schemes. 

• Localize observations to get rid of spurious correlations. 
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