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[11] A new bio-optical algorithm has been developed to provide accurate assessments of
chlorophyll a (Chl @) concentration for detection and mapping of algal blooms from
satellite data in optically complex waters, where the presence of suspended sediments and
dissolved substances can interfere with phytoplankton signal and thus confound
conventional band ratio algorithms. A global data set of concurrent measurements of
pigment concentration and radiometric reflectance was compiled and used to develop this
algorithm that uses the normalized water-leaving radiance ratios along with an algal
bloom index (ABI) between three visible bands to determine Chl a concentrations. The
algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is
subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer
(MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a
variety of coastal and ocean waters the present algorithm makes good retrievals of the
Chl a concentration and shows statistically significant improvement over current global
algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms
on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida

shelf shows that the new algorithm provides a better means for detecting and
differentiating algal blooms from other turbid features, whereas the OC3 algorithm has
significant errors although yielding relatively consistent results in clear waters. These
findings imply that, provided that an accurate atmospheric correction scheme is available
to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be
extensively used for quantitative and operational monitoring of algal blooms in various

regional and global waters.
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1. Introduction

[2] Increasing runoff of nutrient pollution, hydrographic
changes and climate oscillations are a major cause of the
global increase in massive microalgal blooms [4Anderson
et al., 2002; Sellner et al., 2003; Carstensen et al., 2004;
Edwards et al., 2006], some of which threaten the diversity
in a natural ecosystem and are unpalatable for commercially
important shellfish in many coastal waters of the world
[Stumpf, 2001; Kirkpatrick et al., 2004; Yentsch et al., 2008;
Shanmugam et al., 2008, and references therein]. This has
prompted the decision to constitute a number of national,
regional and international programs, namely the Global Ecol-
ogy and Oceanography of Harmful Algal Blooms (GEOHAB)
(http://ioc.unesco.org/hab/GEOHAB.htm), Northwest Pacific
Action Plan (NOWPAP) (http://www.nowpap.org/), and
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Korean Harmful Algal Bloom Research Group (KORHAB)
(http://ioc.unesco.org/hab/HAN29 Final comp.pdf), to under-
stand the features and mechanisms underlying the population
dynamics of recent algal blooms events, and to improve and
develop management and amelioration strategies [Shanmugam
et al., 2008].

[3] Remotely sensed ocean color data acquired with sat-
ellite sensors such as SeaWiFS (Sea-viewing Wide Field-
of-view Sensor) and CZCS (Coastal Zone Color Scanner)
have greatly increased our knowledge of the distribution of
chlorophyll @ in the oceans. They have been successfully
used to provide a synoptic description of optical and bio-
logical properties of marine waters, to address marine envi-
ronmental issues, and to investigate a variety of topics
including marine primary productivity, ecosystem dynamics,
sedimentation and pollution [Steidinger and Haddad, 1981;
Campbell and Esaias, 1983; Carder and Steward, 1985;
Harding et al., 1992; Behrenfeld and Falkowski, 1997; Bailey
and Werdell, 2006; Marrari et al., 2006; Volpe et al., 2007].
As evidenced by the successful use of these data to study
pigment distributions, the abundance of phytoplankton pig-
ments plays an important role in determining spectral sea
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surface reflectance. Particularly in coastal waters however,
changes in ocean color are a result of in-water constituents
such as the chlorophyll a (Chl a), suspended sediments (SS),
and colored dissolved organic matter (CDOM), which pos-
sess different absorption and scattering properties [Schofield
et al., 1999; Martin Traykovski and Sosi, 2003]. Of these,
Chl a is widely used as an index of phytoplankton biomass,
and an important parameter in the bio-optical modeling
studies to determine its absorption coefficient and further
separate into different phytoplankton groups [Cullen et al.,
1997; Carder et al., 1999; Schofield et al., 2004]. Because
ocean color signals vary in response to many factors and
materials such as SS and CDOM often interfere with phy-
toplankton signal, it remains a challenge with conventional
band ratio algorithms to accurately determine and differen-
tiate chlorophyll a concentrations from other constituents in
optically complex waters.

[4] Many global algorithms that have been developed to
estimate Chl a concentrations from satellite ocean color data
typically take advantage of decreased radiance (or reflec-
tance) in the blue (440-510 nm) and increased radiance
(or reflectance) in the green (550-565 nm) by working in
terms of the ratios in these two wavelength domains (e.g., the
SeaWiFS Ocean Chlorophyll four-band algorithm OC4v4
involving A1 =443, 490, and 510 nm, and A2 =555 nm), and
Moderate Resolution Imaging Spectroradiometer (MODIS)/
Aqua Ocean Chlorophyll three-band algorithm OC3
involving A\l =443 and 488 nm, and A2 =551 nm) [O 'Reilly
et al., 1998, 2000]. While this approach has been valid in
oceanic waters where a change in the concentration of Chl a
mainly causes a shift in the blue to green ratios of upwelling
light fields [Morel and Prieur, 1977], these ratios can vary in
response to factors besides chlorophyll concentration, and
therefore introduce large errors in pigment retrievals from
satellite data in waters with high CDOM and SS contents
[Sathyendranath, 2000; Darecki and Stramski, 2004]. It is
worth noting that spectral curvature algorithms were devel-
oped and successfully applied to aircraft radiance data to
investigate Chl a distributions in estuarine and coastal waters
[Campbell and Esaias, 1983; Harding et al., 1992]. These
algorithms were found to have the potential to reduce
uncertainty in Chl «a retrievals in turbid waters. A number of
other optical methods have been developed and used with
satellite data to provide a valuable tool for detection and
mapping of algal blooms [Gower and Borstad, 1990; Stumpf,
2001; Subramaniam et al., 2001; Tomlinson et al., 2004;
Hu et al., 2005; Wynne et al., 2005; Ahn and Shanmugam,
2006; Kutser et al., 2006; Cannizzaro et al., 2008]. Such
approaches are qualitative, regional, complex and/or inac-
curate because of known atmospheric correction problems
or high CDOM and SS contents in Case 2 waters, which
require new algorithms based on new approaches dealing
with both atmospheric correction and retrievals of ocean
bio-optical properties from water-leaving radiance [4/n
and Shanmugam, 2007].

[5] Our objective is to develop a robust chlorophyll a
algorithm for use with satellite observations to detect and
monitor various algal blooms in complex ocean waters. The
performance of this algorithm is evaluated using large in situ
bio-optical data sets and satellite matchups from a variety of
waters including oceanic and coastal environments. The new
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algorithm is also compared with OC3 and OC4v4 bio-optical
algorithms using these data sets. Finally, its strength and
weakness in differentiating algal blooms from other features
is evaluated using MODIS/Aqua images over the Arabian
Sea and west Florida shelf.

2. Data and Methods

2.1. In Situ Data Sets

[6] Five different data sets containing spectral measure-
ments at key wavelengths and pigment concentrations from
different regions around the world were used to develop and
evaluate the new algorithm, namely (1) International Ocean
Color Coordinating Group (IOCCGQG) in situ data set (N =
591, Chl @ 0.03-32.65 mg m °), (2) Korean Ocean Research
and Development Institute (KORDI) in situ data set (N =57,
Chl a 1.12-119.33 mg m ), (3) NASA bio-Optical Marine
Algorithm Data (NOMAD) in situ data set (N = 2074, Chl a
0.019-48 mg m ), (4) NOMAD satellite matchups data set
(N =221, Chl a 0.04-43.2 mg m ), and (5) Carder in situ
data set (N = 643, Chl a 0.02-125.2 mg m °). Of these,
NOMAD and IOCCG data sets are global, high quality in
situ bio-optical data sets collected over a wide range of
optical properties, trophic status, and geographical locations
in open ocean waters, estuaries, and coastal waters (including
Arabian Sea and coastal waters of India). The KORDI data
were collected in bloom waters of the Korean South Sea
during August 2001, 2003 and 2004. The Carder data were
collected during several cruises in west Florida shelf and
neighboring waters in different seasons and years from 1999
to 2006. Only stations having both optical and pigments
measurements were considered forming the above data
sets. The first two data sets were used for algorithm devel-
opment, while the later three independent data sets were
used for algorithm validation/performance assessment.
Using these data sets, the new algorithm was compared with
OC3 and OC4v4 bio-optical algorithms developed for
MODIS and SeaWiFS sensors. Briefly, the OC3 algorithm
estimates Chl a from a cubic polynomial formulation by
using the maximum band ratio determined as the greater of
the R (443)/R(551) or R(488)/R(551), whereas the
0OC4v4 algorithm estimates Chl a from a fourth-order
polynomial (five coefficients) by using the maximum band
ratio determined as the greater of the R(443)/R.(555),
R;5(490)/R5(555), or R(510)/R5(555) values [O Reilly
et al., 1998, 2000]. These algorithms are presently used for
routine global processing of SeaWiFS and MODIS imagery.

[7] One of these three independent validation data sets
(i.e., NOMAD satellite matchups) that contains matchups of
the SeaWiFS determinations of reflectance spectra R,(0", \)
and collocated field observations was used to validate the
accuracy of our algorithm when applied to satellite imagery.
Since some of these reflectance spectra from SeaWiFS
measurements that were not quality controlled by excluding
observations where the atmospheric correction may be sus-
pect had negative values at short wave bands (412 and
443 nm), it was necessary to use a Case 2 water correction
scheme (CCS) [Shanmugam, 2010] to correct the negatively
biased data sets. This scheme is flexible to deal with such
cases and produces accurate water-leaving radiances suitable
for algorithm implementation in complex waters. The ulti-
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Figure 1. Schematic representation of the algorithm implementation to Moderate Resolution Imaging

Spectroradiometer (MODIS)/Aqua imagery.

mate goal of using such large data sets in combination with
the CCS was to evaluate the extent to which the new
algorithm could be applied to satellite ocean color data (such
as MODIS, MERIS (Medium Resolution Imaging Spec-
trometer), and OCM (Ocean Color Monitor OCM)) to esti-
mate Chl a and use it for detection and mapping of algal
blooms in various regional and global waters.

2.2. Satellite Data

[8] High-resolution MODIS/Aqua Level 1A (~1 km/pixel
at nadir, LAC-local area coverage) data over the Arabian
Sea and west Florida shelf in different periods (9 September
2003, 25 April 2005, 05 October 2006, and 18 February
2010) were obtained from NASA Goddard Space Flight
Centre (http://oceancolor.gsfc.nasa.gov/) and processed up
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to Level 2 (L2) to obtain remote sensing reflectance and
normalized water-leaving radiance (nL,,) for the visible
bands (412, 443, 488, 531, 551 nm) using SeaDAS inte-
grated with the CCS scheme. Because these two regions are
typical examples of nearshore high-productivity waters and
coastal/estuarine waters dominated by algal blooms and
suspended sediments [Desa et al., 2001; Tang et al., 2002;
Gomes et al., 2008; Hu et al., 2005; Cannizzaro et al.,
2009], the standard atmospheric correction algorithm (with
SeaDAS) applied to L1A raw data resulted in biased low
and often negative reflectance values in these waters. This
problem is essentially caused by the NIR ocean contribu-
tions in such waters [Siegel et al., 2000; Wang and Shi,
2005]. Thus, the MODIS/Aqua data were processed using
the combined CCS and SeaDAS atmospheric algorithm in
order to derive accurate normalized water-leaving radiances
(Figure 1). These data were further processed using the new
algorithm and OC3 algorithm to derive the Chl a con-
centrations. In addition, reflectances at the wavelengths of
412, 488 and 531 nm were used to generate true color
composite images for characterizing different levels of algal
accumulation and distinguishing different water types in the
study area.

3. Algorithm Description

[9] The ocean color signal sensed by a satellite can be
quantified using the remote sensing reflectance just above
the sea surface R, (0%, \) and is defined as the ratio of
upwelling radiance (L,, (07, \)) to downwelling irradiance
E,; (0%, )) just above the sea surface. Both these parameters
may be obtained after extrapolation of radiance and irradi-
ance measured just below the sea surface and their ratio can
be further related to the inherent optical properties (IOPs) of
the water column via the relation of Mobley [1994],

o Lu(070) 17 L, (07,3
Rs(07, ) = Eq(07,0) ~ n2 E40-,))

o)) O

where r is the average specular reflectance at the sea surface,
~3% Austin [1974], n is the index of refraction of seawater
(1.341), L, (07, X) is the spectral upwelling radiance just
below the sea surface measured by a profiling spectro-
radiometer, £, (0, ) is the incident spectral irradiance just
below the sea surface measured by a similar radiometer,
a(\) and by(N) are the IOPs (absorption and backscattering
coefficients, respectively), f/Q is a factor accounting for
the bidirectional structure of the upward radiance field
(=0.0949), and k (=0.54) accounts for the transmission and
reflection of the air-sea interface [Mobley, 1994; Siegel et al.,
1995; Gordon et al., 1988]. Remote sensing reflectance is the
standard input to many of the derived product algorithms and
is converted to normalized water-leaving radiance nL,, () as
follows,

nLy,(A) = Fo(A) X Ris(A) )

where F is mean solar irradiance at wavelength A. nL,, (\) is
more stable than the water-leaving radiance spectra used for
the algorithm development [4hn and Shanmugam, 2006].
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[10] The algal bloom index (ABI) originally developed by
Ahn and Shanmugam [2006] is calculated based on the
normalized water-leaving radiance at three wavelengths in
the visible domain (i.e., 443, 490, 555 nm), as follows,

X = 481 = 10 (7)) /[ (ratesg) + () 3)

where the threshold value of « is assumed unity, which
allows the calculation to work well as phytoplankton
absorption is the important driver of reflectance in the blue
(443 nm), and other factors regulate reflectance at 555 nm
(thus, Chl a has a strong, inverse relationship with the
reflectance at 443 nm and a much weaker, positive rela-
tionship at 555 nm [Kostadinov et al., 2007]). X is the algal
bloom index (ABI) which varies from 0 to 10. An index
value of 0 means no algal bloom and close to 10 indicates
the highest possible of algal bloom in a given location. Note
that the denominator of equation (3) from the combined
ratios of nL,(490)/nL,(555) and nL,(443)/« is relatively
much larger (as nL,,(443)/a is maximal) than the numerator
of equation (3) from the difference of these ratios for clear
and turbid waters (nonblooms), which result in lower index
values for these waters. In contrast, both the denominator
and numerator of equation (3) become small (as nL,,(443)/«
is minimal) and are close with each other, this result in
higher index values for waters containing algal blooms. As a
result, the ABI should be maximally sensitive to bloom
variability and minimally to materials other than phyto-
plankton such as SS and CDOM in typical Case 2 waters.
The ABI can be used to differentiate pixels with microalgae
from those with clear open oceans and turbid waters. It also
makes certain that the ABI is more accurate than that of a
single band water-leaving radiance (L,(443)) using a cubic
polynomial equation [4hn and Shanmugam, 2006]. Fur-
thermore, the use of nL,, (instead of L) can better represent
the spectral changes of algal blooms in the visible bands.
[11] Since the ABI has a restricted range of values (0—10)
that cannot explain a wide range of Chl a variability, it is
multiplied by a variable X’ involving two conventional nL,
ratios (commonly used in the standard bio-optical algo-
rithms, e.g., OC3 and OC4v4) to modify the amplitude of
these ratios in order to reduce uncertainties in Chl a
retrievals. This variable factor is quite similar to that used in
the spectral curvature algorithm that was applied to aircraft
radiance data in turbid water effectively [Campbell and
Esaias, 1983; Harding et al., 1992]. It decreases with
increasing Chl a concentrations and is defined as follows,

N=XxX .
where, X' = ((’ILM-(443)><"L“(490)/an(555)) ) (4)
’ (Moo —Aaa3)

Similar to other empirical approaches [O’Reilly et al., 1998],
large in situ measurements are used to relate the X =X x X" to
Chl a concentrations. This relation is different from those of
the conventional ratio approaches since the basis for the
development of these algorithms has been the observation
that changes in Chl a in Case 1 waters [Morel and Prieur,
1977] are accompanied by more or less systematic varia-
tions in the ocean optical properties including the spectrum
of ocean reflectance [Gordon and Morel, 1983]. In Case 2
waters, these ratios are significantly influenced by materials
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Figure 2. In situ chlorophyll a concentration versus X = X x
X' (using International Ocean Color Coordinating Group
(IOCCG) and Korean Ocean Research and Development
Institute (KORDI) in situ data sets). Solid line is the best
fit regression to our data (N = 648, R* = 0.90).

other than phytoplankton such as the CDOM, SS and per-
haps bottom reflectance [Siegel et al., 2000; Darecki and
Stramski, 2004; Bailey and Werdell, 2006].

[12] Figure 2 shows the relationship between X = X x X'
and Chl a concentrations that provides the best representa-
tion for the most of data collected in a wide variety of
waters. A tight inverse correlation between these two para-
meters is observed (R? = 0.90). We fitted the data of Chl a
versus N = X x X’ to the power function

Echi—a = 0.1403 x (N)(—o.sn) )

where ¢, 1S the initial estimate of Chl a concentration
constrained to similar optical regimes from where the large
in situ data were collected and used to derive the above
relationship. To make this relationship applicable in a wide
range of water types and to be well-suited for use with
MODIS/Aqua data, it is further tuned to correlate €., to
ABI_ Chl a products;

o1 .

ABI_Chl — a = 125 -
(126.69 + 596 )™

The coefficients for the ABI Chl a were locally optimized
using the same data sets (as in equation (5)) in order to
minimize uncertainties in Chl a retrievals. Though the ABI
algorithm is developed for marine environments, it can be
extended to the inland water bodies (such as inland Lakes)
after fine tuning instead of reparameterization of the algo-
rithm. However, this requires an understanding of the spe-
cific optical properties of such environments.

4. Evaluation of Algorithm Accuracy

[13] The accuracy of the ABI and standard algorithms was
assessed (for three independent data sets such as NOMAD
in situ data set, NOMAD-SeaWiFS matchups, and Carder
data sets) by comparing their predicted Chl a values with
those measured in the laboratory. The comparison was
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quantified by means of the difference between predicted
Chl @ and measured Chl a. Systematic and random errors
were characterized by the mean relative error (MRE) and
root mean square error (RMSE), respectively [Lee, 2006];
these metrics are defined as:

v log(Chl a’***") — log(Chl aj*™)

MRE = ; Tog(Chl &) x 100 (7)
N 4 1/2
Z [log (Chl aﬁ)redtcted) o 10g<Chl a;nsitu)} 2
RMSE = | =! e (8)

where N is the number of valid retrievals. The MRE is a bias
estimator and has been widely used in the recent investiga-
tions [e.g., Darecki and Stramski, 2004, and references
therein]. These errors were calculated after log transforma-
tion. The accuracy of Chl a predictions (for all data acquired)
was also assessed based on the slope, intercept and correlation
coefficient of the Chl — a”"*¥"! — Chl — a"™ relationships
[IOCCG, 2006]. Table 1 summarizes the results of algorithm
validation for all the three data sets.

5. Results

5.1. Algorithm Validation

[14] The performance of the ABI algorithm was evaluated
using three independent data sets: Carder in situ data set,
NOMAD in situ data set and NOMAD-SeaWiFS matchups,
and by comparison with the standard algorithms such as
OC3 and OC4v4. Figure 3 compares the algorithm estimates
of Chl a with in situ measurements of Chl a concentration.
The results of algorithm performance evaluation are sum-
marized in Table 1. To gain further insight into the difference
between the algorithm estimates and in situ measurements of
Chl a at each station/location, the absolute relative differ-
ence/error (AMRE) was calculated and plotted as a function
of in situ Chl a (Figures 3d-3f). Note that, for all three data
sets, ABI _ Chl a concentrations are closely consistent with in
situ Chl a across a wide range of environments and are

Table 1. Comparison of Algorithm Performances Using the Three
Independent Data Sets

Algorithms  MRE" (%) RMSE" Intercept Slope R? N
Carder In Situ Data Set
ABI —17.44 0.2366 —0.0859 0.9461 0.8668 643
0C3 —52.81 03105 -0.2127 0.9706 0.8560 643
0oc4 —38.53 0.3068 —0.1830 0.8683 0.8466 643
NOMAD In Situ Data Set®
ABI 40.06 0.2723  0.0735 1.0601 0.8190 2074
0C3 —6.75 0.2677  0.0060 1.1149 0.8148 2074
oc4 25.14 0.2658  0.0404 1.0118 0.8271 2074
NOMAD SeaWiFS-Matchups Data Set

ABI -17.97 0.2110 —0.0461 0.9946 0.8714 221
0C3 —57.68 0.2523  —0.1442 1.0033 0.8689 221
oc4 -37.67 0.2348 -0.1046 0.9350 0.8709 221

“MRE, mean relative error; RMSE, root mean square error.
"NOMAD, NASA bio-Optical Marine Algorithm Data.
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Figure 3. Scatterplots illustrating the comparisons of estimated Chl a concentrations to in situ Chl a con-
centrations for the (a) Carder and (b) NASA bio-Optical Marine Algorithm Data (NOMAD) in situ data
sets and (¢) NOMAD-SeaWiFS matchups. The solid lines represent the 1:1 lines. (d—f) The absolute mean

relative error (AMRE = estimated Chl a— in situ Chl
across a wide range of waters is also shown.

generally comparable with those of the OC3 and OC4v4
algorithms. It exhibits consistentlg good correlations with in
situ Chl a concentrations, with R~ always greater than 0.80.
For the Carder data set, the ABI algorithm performs gener-
ally better than OC3 and OC4v4 algorithms, but its slope is
slightly lower than that for the OC3 algorithm. Notably, all
other statistics have improved for the ABI algorithm. The
0OC4v4 algorithm performs only marginally better than OC3,
but it has slightly lower slope and R? values. MRE has
considerably deteriorated for OC3 (as the OC4v4 algorithm).
Looking more closely at the AMRE, both OC3 and OC4
algorithms significantly overestimate Chl a, especially for
open ocean waters and regions with Chl @ < 0.5 mg m °.
These results are consistent with the previous observations of

6 of

a/in situ Chl a) versus in situ Chl a concentrations

systematic overestimation of Chl a in waters with low Chl a
values [Stramska et al., 2003; Pan et al., 2008]. On the
contrary, the overestimation is significantly reduced by the
ABI algorithm in low and high Chl a regimes. This demon-
strates successful retrieval of Chl a concentrations within a
reasonable accuracy, and shows significant improvements
over the OC3 and OC4v4 algorithms. When extending a
similar validation with NOMAD in situ data set consisting
of large bio-optical measurements in a diverse range of
environments, the ABI algorithm performs roughly equal
compared with OC3 and OC4v4 algorithms (considering
RMSE, slope and R? in Table 1). However, its MRE is
considerably worse. The OC3 algorithm performs slightly
better than OC4v4, but has achieved excellent MRE and
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Figure 4. (top) A MODIS/Aqua true color composite on 18 February 2010 in the Arabian Sea and Gulf
of Oman. The corresponding Chl ¢ images derived using (middle) the OC3 and (bottom) ABI algorithms.
The combined SeaDAS algorithm and CCS scheme was used for atmospheric correction of MODIS/Aqua

data.

intercept values. Note that all three algorithms show similar
AMRE values closely aligned between the no-bias line
(baseline), albeit with slight underestimations across the
entire range of Chl a concentrations. A closer inspection
also allows us to identify few data points above the baseline
indicating an overestimation of Chl a by the ABI algorithm
in waters with Chl a 0.1-1 mg m >, however this is not the
same magnitude as previously observed with the OC3 and
OC4 algorithms.

[15] In order to validate the products derived from ocean
color sensors, it is imperative to compare in situ measure-
ments of Chl ¢ with remotely sensed values. Here, an
independent data set containing matchups (N = 221) of the
SeaWiFS determinations of reflectance R.(\) and collo-

cated in situ Chl a observations was used to assess the
performance of the ABI and standard algorithms. When
applied to the SeaWiFS data sets, Chl a retrievals with the
ABI algorithm are substantially improved as compared to
those with the OC3 and OC4v4 algorithms. Contrary to
previous validation, OC4v4 performs marginally better than
OC3 algorithm depending on the statistics considered. For
example, OC4v4 has better MRE, RMSE, intercept and R?
values, but other statistics are better for OC3 algorithm. For
Chl a matchups (Figures 3c and 3f), both the OC3 and
0OC4v4 algorithms show noticeable overestimations (at the
higher and lower end) with respect to in situ measurements
in clear oceanic and coastal waters, although their retrievals
being comparable with in situ data in waters with moderate

7 of 12



C04016

[4)]

SHANMUGAM: NEW BIO-OPTICAL ALGORITHM

C04016

i-N
1

w
!

)
200
©
s _

Chl-a (mg m™®)

(@]

T T T T

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

# pixels

Gujarat coast

>

Off Oman coast
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in Figure 4, middle) running across the bloom from turbid coastal areas of the eastern Arabian Sea
(Gujarat, India) to relatively clear waters of the western Arabian Sea (Oman).

Chl a concentrations. By contrast, the validation matchups
between in situ Chl a and satellite Chl a from ABI algorithm
are very excellent and demonstrate good agreement (i.e.,
bias <18%, which is above the accuracy goal of 35% for
satellite retrieved Chl a estimates [Garcia et al., 2005]).
Also, its AMRE has improved considerably over previous
validations. The best statistics with less errors of the vali-
dation satellite matchups imply that the ABI algorithm has
potential to not only improve Chl a retrievals in clear oce-
anic waters but also reliably retrieve this component in
optically complex environments when applied to satellite
data along with a Case 2 water correction scheme.

5.2. Application to Satellite Data in Complex Waters

[16] To investigate the performance of the ABI and OC3
algorithms in optically complex waters (highly turbid and
extensive bloom waters), the high-resolution MODIS/aqua
images acquired over the Arabian Sea and west Florida shelf
were used. These two regions are among the most produc-
tive and turbid regions in the global oceans [Desa et al.,
2001; Joint Global Ocean Flux Study, 2002; Chauhan
et al., 2002; Tang et al., 2002; Anderson et al., 2005;
Goes et al., 2005; Walsh et al., 2006; Brand and Compton,
2007; Emmett Duffy, 2011]. The MODIS/Aqua image of
the Arabian Sea acquired on 18 February 2010 is a good
example of the spatially extensive green blooms of Noctiluca
miliaris, and therefore used for evaluating the ABI and OC3
algorithms. Preliminary examination of true color MODIS/
Aqua imagery from 18 February 2010 (Figure 4, top) reveals
the predominant color of the ocean in coastal and offshore
waters of the Arabian Sea, i.e., green to bluish green indic-
ative of highly persistent and probably largest N. miliaris
blooms of the year 2010 (http://earthobservatory.nasa.gov/
images/imagerecords/43000/43050/ArabianSea AMO _
2010049 Irg.jpg). This true color image is highly compre-
hensive suggesting that large-scale N. miliaris blooms
developed in the Gulf of Oman and mesoscale eddies that
populated the western Arabian Sea during the winter mon-
soon and contributed to the genesis and dispersal of these
blooms from the Gulf of Oman into the central Arabian Sea
[Gomes et al., 2008]. The green features in the nearshore and
offshore waters are well characterized by much weaker
radiances in the blue wavelength band, while the brighter

features relate to highly reflective materials along the coastal
areas (especially Gujarat in the eastern Arabian Sea) caused
by strong radiance in the green wavelength band. These
episodic high values of radiance in the green are indicative of
high particle loads supporting its use as a plume indicator
with satellite data sets [Ofero and Siegel, 2004].

[17] Figures 4 (middle) and 4 (bottom) provides compar-
isons of Chl @ concentrations for this region derived using
the ABI and OC3 algorithms. Note that the OC3_ Chl a
concentrations appear to be more realistic for open ocean
waters than for coastal waters (especially along the Gujarat
coast of India), where Chl a retrievals are considerably
deteriorated (overestimated) and therefore not allowing to
distinguish algal blooms from other features. This suggests
that the significant contribution of suspended sediments
and CDOM absorption may pose complications for apply-
ing global operational algorithms (e.g., OC4v4 and OC3)
[O’Reilly et al., 1998, 2000] to these complex coastal regions
[Desa et al., 2001; Chauhan et al., 2002; Pan et al., 2008].
However, the resulting image from ABI algorithm shows
that it has definitely achieved a substantial improvement over
the band ratio algorithm in both coastal and open ocean
waters. As evident, ABI Chl a values are relatively low in
bright coastal waters of Gujarat, but increase with increasing
concentrations of green algae from coastal waters to offshore
of the Arabian Sea. There is also a close agreement between
algal patches observed on the true color image and those
detected by the ABI algorithm (Figures 4, top and 4, bottom).
It implies that the relative difference between the ABI
algorithm and global algorithm would be relatively small in
offshore regions (except intense blooms) and large in near-
shore regions. This is because the spatial distribution and
magnitude of Chl a from ABI algorithm displayed nearly
similar trends with those of the OC3 algorithm in offshore
regions, whereas in nearshore waters the ABI algorithm
significantly reduced overestimation of Chl a by the OC3
algorithm (Figures 4, middle; 4, bottom; and 5).

[18] To support the full utility of the new algorithm, the
Aqua-MODIS data (9 September 2003, 25 April 2005, and
5 October 2006) over west Florida shelf (WFS) waters were
obtained from NASA Goddard Space Flight Centre and
processed using the ABI and OC3 algorithms. Shown in
Figure 6 are the results of ABI and OC3 algorithms in the
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Figure 6. (top) Composite MODIS/Aqua Chl a (9 September 2003, 25 April 2005, and 5 October 2006)
for the west Florida shelf (WFS) derived using the ABI and OC3 algorithms. (middle) Comparison of the
algorithm-derived Chl a concentrations (from individual MODIS data) with in situ Chl a at discrete loca-
tions (station marks shown in the OC3-Chl a image) and (bottom) their absolute mean relative errors.

WES region including Florida Keys. It is apparent that the
OC3 algorithm exhibited continuous high pigment patches
(likely because of overestimation) unrelated to algal blooms
along the entire west coast of Florida (including Florida
Keys, an area caused by high turbidity), which masked the
contrast between dark and bright water features because all
color changes are interpreted by the band ratio algorithm as
changes in “chlorophyll a concentration” [Hu et al., 2005].

In contrast, the ABI algorithm was found to easily differ-
entiate between algal bloom and shallow water features, as it
produced accurate Chl a retrievals with high values in truly
bloomed waters and relatively low values in highly scat-
tering waters. These predicted high pigment patches were
found increasingly detached from other suspicious features
and confirmed the visual analysis performed on the true
color composite image.
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[19] To better illustrate the accuracy of these algorithms,
OC3_ Chl a and ABI_ Chl a products were compared with
in situ Chl a (Carder data set) in coastal waters from
Charlotte Harbor to Tampa Bay (Figures 6, middle and 6,
bottom). As noted earlier, the OC3 algorithm tends to have
overestimated Chl « at coastal stations (turbid/black waters)
and underestimated at stations with high pigment contents.
This resulted in high AMRE (—0.5~2) with OC3_ Chl a. On
the contrary, the ABI algorithm reduced errors in coastal
waters and performed marginally better than OC3 at other
sites. The AMRE for ABI_ Chl a was better (—0.55~0.89)
than that for OC3_ Chl a at most stations.

6. Discussion and Conclusions

[20] In the global perspective, green, red, brown or other
microalgae blooms have been reported in many coastal
oceans. The appearance, persistence and epidemic of some
of these algal blooms have also been reported to cause fish
mortality, shellfish poisoning, physiological impairment,
and numerous ecological and health impacts [Shanmugam
et al., 2008, and references therein]. To quantitatively
assess these blooms, many recent studies have relied on
Chl a concentration to characterize their intensity, spatial
distribution, seasonal and interannual variations. In this
study, a new bio-optical algorithm (ABI) has been developed
based on a large in situ data set for accurately assessing Chl a
concentrations and mapping algal blooms in complex ocean
waters. The performance of this algorithm has been evalu-
ated with independent regional and global in situ data sets,
SeaWiFS/MODIS matchups and MODIS/Aqua imagery. Its
performance has also been assessed by comparison with the
standard algorithms (i.e., OC3 and OC4). Importantly, our
analyses showed that although the OC3 and OC4 algorithms
reliably estimate Chl a concentrations in clear waters, they
do not provide accurate absolute assessments of chlorophyll
a concentration in optically complex waters. This was
apparent in the MODIS/Aqua images that showed significant
overestimation of Chl a with OC3 algorithm in coastal and
offshore waters dominated by sediments and algal blooms.
Using such Chl a data alone for analysis of nearshore areas
with higher Chl a concentration further requires access to
field data and interpretation by an analyst with an under-
standing of the chlorophyll ¢ and optical patterns in the
region. One potential reason is inherent limitations in the
algorithm itself rather than the data set used to develop this
band ratio algorithm. Previous studies have indicated that
conventional band ratios are sensitive to other substances
not covarying with Chl a [Darecki and Stramski, 2004;
Volpe et al., 2007; Shanmugam et al., 2008, and references
therein] and their ability to differentiate algal blooms from
nonblooms and turbid features are therefore greatly reduced
in complex waters. Inaccurate Chl a estimations from these
ratios consequently prevent modeling studies to fully char-
acterize the biogeochemical properties, especially in waters
where CDOM and SS often overwhelm phytoplankton in the
contribution to bio-optical properties [Gordon and Morel,
1983; Kirk, 1994; Mobley, 1994; IOCCG, 2006]. On the
contrary, the ABI algorithm enabled reliable Chl a predic-
tions when applied to both in situ and satellite data sets.
Improved estimates of Chl a from the ABI algorithm helped
the delineation and discrimination of algal blooms from other
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features in the Arabian Sea and west Florida shelf. Unlike the
standard algorithms, the absolute values of reflectance are
important for the ABI algorithm, and observational errors in
the reflectance measurements and calculation will deteriorate
the resulting data quality. Other sources of uncertainty in the
new algorithm might stem from seasonal variability (riverine
discharge along with wind forcing and direction) in the
amount of Chl a caused by pigment package effect [Bricaud
et al., 1998; Babin et al., 2003]. In addition to these, the
degree of colony shelf-shading consequently alters the
remote sensing reflectance spectrum for a given abundance
[Westberry et al., 2005].

[21] It is important to mention that many coastal regions
contain some of the most consistently highly turbid or
highly productive (phytoplankton blooms) waters; therefore
significant water contributions at the longer wavelengths can
be expected in these regions. The current SeaDAS atmo-
spheric correction algorithm for producing the global ocean
color product from SeaWiFS and MODIS uses the algorithm
of Gordon and Wang [1994]. Specifically, the algorithm
uses two near infrared (NIR) bands centered at MODIS 748
and 869 nm (SeaWiFS 765 and 865 nm) to determine
aerosol type and estimate the atmospheric effects in the
visible by extrapolating the aerosol effect from the NIR into
visible bands. Though the basic assumption of negligible
water-leaving radiance (L,) in the NIR for deriving aerosol
properties was replaced by Stumpf et al. [2003] and then
updated by Bailey et al. [2010], the standard atmospheric
correction algorithm still produces low or negatively biased
L, at short wavelengths in turbid and bloom-dominated
waters (as found in the Arabian Sea). As a result, the ocean
color products, such as Chl a concentration, have significant
errors in these waters. Recently, it has been demonstrated
that the coastal correction scheme (CCS) can be combined
with standard SeaDAS atmospheric correction algorithm to
derive improved ocean color products for the coastal turbid
and productive waters [Shanmugam, 2010]. Thus, it was
necessary to use this scheme to process the MODIS ocean
color data for deriving accurate normalized water-leaving
radiance and thereby improving ocean color products in the
complex waters considered in this study. Thls approach
allows pixels even with LW(412) <02mWem 2 pym st
that are excluded to minimize the impacts from atmospherlc
overcorrection in causing negative or significantly reduced
water-leaving radiance [Siegel et al., 2002] to become valid
with positive water-leaving radiance values for these regions.

[22] In conclusion, a new algorithm has been developed as
a potential tool for applications to data collected from
spaceborne satellite ocean color sensors. Figure 1 provides
simple guidelines on how to apply the algorithm. With the
free availability of MODIS/Aqua data, the proposed algo-
rithm has been tested on several MODIS/Aqua images and
its effectiveness has demonstrated great potentials in accu-
rately estimating Chl a concentrations and thus detecting
and differentiating algal blooms from other features in the
Arabian Sea and west Florida shelf. Establishment of such
accurate records of Chl a and algal blooms is highly desired
by the scientific community to understand local environ-
mental changes in response to anthropogenic activities and
global climate change. With in situ hydrographic, nutrients
and bloom observations data, such records can addresses
several questions: Why, when and where the summer HABs

10 of 12



C04016

develop, occur and terminate? Whether there is existence of
any new bloom which had not been detected earlier by
conventional field and remote sensing techniques? What are
the spatial and temporal distributions of summer HABs?
Can outbreaks be tied to the transport of offshore waters?,
and, if so, can this transport be detected by remote sensing?
What mechanisms elucidate the observed patterns? Is there a
possible link between the HABs and nutrient enrichment?
These are important points to be addressed in order for the
major monitoring programs to help protect marine ecosys-
tems and to secure and support sustainable development, the
economy, and the environment of the region.
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