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BASIC TECHNIQUES

e Clustering

e Principle component analysis (PCA)
e Time series analysis

e Singular spectrum analysis

e Disriminant analysis

e Pattern recognition and learning
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Cluster Analysis is a Classification Technique

e Multivariable data analysis

Non-Exclusive
(Overlapping)
Extrinsic Intrinsic
(Supervised) (Unsupervised)

Anil K. Jain, Richard C. Dubes, 1988, “Algorithms For Clustering Data”, Prentice Hall, NJ.

Classification

Hierarchical



Approaches to carry out Cluster Analysis Algorithms

e Agglomerative vs Divisive

e Serial vs Simultaneous- objects
e Monothetic vs Polythetic - attributes
e Matrix Theory vs  Graph Theory



Basic Definition

e Data Matrix

Obyects
| p) n
1| Xu X Xin
2 Xa X . Xon
X= 3 X311 X3 Xan
m | Xm Xm . Xm




Basic Definition

e Data Matrix

e Objects

e Attributes

Note: Classify objects — Q analysis
Classify attributes — R analysis



Framework for Cluster Analysis

e Obtain the Data Matrix

Objects
1 2. n
I |
2 X2l X22 e X2
X= 3 X31  X32 e X3
m Xl X2 e X

X.; . Refers to the j™ object
Xi. : Refers to the it attributes across the n objects.



Framework for Cluster Analysis

e Obtain the Data Matrix

Example:

X
% | S




Framework for Cluster Analysis

e Obtain the Data Matrix

e Standardize the Data Matrix

e Compute the resemblance matrix
m Resemblance Coefficient
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Resemblance Matrix

| 2 i n-1 n
X X e X X
St X X X
Ss1 S3 X X X
: X

St Sm2 Sun1 X
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Example:

1 2 3 4 5

X 0 » 3 30 5
X5 D 10 15 10
X, ,
5 2; %4
3
1

Euclidean distance e;,=[(10-20)? + (5-20)]*? = 18.03
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Example: Resemblance Matrix

Resemblance Matrix
| 2 3 4
| X X X X
2 18.03 X X X
S= 3 20.6 14.1 X X
4 224 11.2 5 X
5 7.07 18.03 25 25.5




Framework for Cluster Analysis

e Obtain the Data Matrix

e Standardize the Data Matrix

e Compute the resemblance matrix
m Resemblance Coefficient

e Execute the clustering method
m What is the clustering method?
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Example:

| 2 3 4 5
X 0 20 3B 30 5
X[ 5 2 10 D 10

UPGMA (unweighted pair-group method using arithmetic average) ,
Euclidean distance:

e,

\AHB
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Example

)

Merge 3 and 4 to form one cluster (34) => 1, 2, 5, (34)

€aqy = 5 [€31+€x] = [20.6 +22.4] =215

Canp = 5 [E3+€p) =, [14.1+11.2] =12.7
1
2

Cans = 5, [Css+ €45l = 5 [25+25.5] =253
1 2 5 (34)
1 X X X X
S= 2 18.03 X X X
5 7.07 18.03 X X
(34)] 215 12.7 25.3 X
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Example

b) Merge 1 and 5 to form one cluster (15) => (15), (34), 2

eusp = ! [erp+ €3] = ! [18.03+ 18.03] = 18.03

Cusian = 1 [E13+ €+ es+el= , [20.6+22.4+25+255] =234

)15 (3
2 | X X X |

S= (15| 18.03 X X
eyl 127 B4 x

17



Example

C) Merge 2 and (34) to form (234) cluster => (15), (234)

_ _
Cusyzaay =  [€rateztey,testesteg,]=21.6

(15)  (234)
5= (15 X X
(234) 216 X




Example

d) The last step is to combine these in a single cluster (12345),
and from that the tree can be drawn.

21.6

12.7

7-07 [ T S -

Tolerant of all differences, all similar
A

As we move higher, more
tolerant and allow differences to
exist while proclaiming similarities

(R

each object is a separate cluster
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Data Matrix

Input

Cluster
Analysis
Process

Output

20



Scales for Attributes

Let X be an attribute and A and B be two objects whose scores
on the attribute X are X, and Xg.

e Nominal scale

Xa=Xg 0or X, # Xg

Example: binary variables takes two values - true/false values,
gender takes two values - Male/Female.
colors of a rainbow — 7 values,VIBGYOR

21



Scales for Attributes

Let X be an attribute and A and B be two objects whose scores
on the attribute X are X, and Xg.

e Nominal scale

e Ordinal scale

Xa=Xg , Xp>Xg ,0r X,<Xg.
Example: rating on a scale of 1 to 10,
grades in a course: A, B, C, D, and F.
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Scales for Attributes

Let X be an attribute and A and B be two objects whose scores
on the attribute X are X, and Xg.

e Nominal scale

e Ordina

e Interva

SCa

SCa

e

e

If X, > Xg, one can say Ais X, - Xg units difference than B.
Example: when X,=10°C and Xz=35°C ,one can say A is cooler

than B by 25°C.
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Scales for Attributes

Let X be an attribute and A and B be two objects whose scores
on the attribute X are X, and Xg.

e Nominal scale

e Ordinal scale

e Interval scale
e Ratio scale

If X, > Xg, then one can say that Ais

X' times superior to B.
i)

Example: Salary.
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Scales for Attributes

Let X be an attribute and A and B be two objects whose scores
on the attribute X are X, and Xg.

e Nominal scale

e Ordinal scale

e Interval scale
e Ratio scale

m Quantitative / Qualitative attributes

25



Standardizing the Data Matrix

Xn Xp X

Xn Xy X2

X3 X3 X3

Xo1 X2 Xiw
Data Matrix

| 2 n

Zy Iy Z, |
ZEI ZI{E Zln
ZEI ZEI ZEﬂ
Zo Za Z e
Standardized Data Matrix

AS



Define

Standardizing the Data Matrix

Let

Xij  be the score of object j on the attribute i,
X the i" row of X in the data matrix X,
X5  the " column of X in the data matrix X,

- 1

Xe==> X, as the i" row average, and

S .
X=X as the i" column average.
i=1
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Standardizing the Data Matrix

Method 1

Xy — Xi+
Zij = fS 20<27;<+20

1

n

1 —
where S;*:LIE()@—XH) }

is the sample standard deviation of the i row.
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Standardizing the Data Matrix

Example 1:

Data Matrix

|l 2 3 4 5|X S

X=1110 20 30 30 5119 934
21 5 20 10 15 10112 5.70

1 |
-

Standardized Data Matrix

| 1 2 3 4 5

-096 0.11 1.18 1.18 -1.5

21-123 1.4 035 035 -035

AS



Standardizing the Data Matrix

Example 2:

Data Matrix

11 2 3 4 5|X S

X=1120 24 21 19 23|21.4 2.07
2119 6 21 24 18115.8 6.94

t |
>

Standardized Data Matrix

| 1 2 3 4 5

-068 125 -0.19 -1.16 0.77

2(046 -141 055 1.18 032

A
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Standardizing the Data Matrix

Other Standardizing techniques:

1. Transformation

Zi=log (X)) , or ,Zi=yX% .. .etc

2. Removing outliers.



Resemblance Coefficients for Quantitative attributes

- ..
1

V1 N(N -1
(3)-3ve-




Resemblance Coefficients for Quantitative attributes

1
=—N(N -1
y |7 NN

G
1 2 3 4 Mean STD 1

1 20 35 40 20 | 2875 1031 80
X= 2| 40 55 80 0 43.75 3351 50 3

3| 25 40 50 15 325 1555 /\./. 2

4l 30 45 60 10 3625 21.36 o e X
Mean 2875 4375 575 1125 20
STD 854 854 1707 8.54 g

1 2 3 4

X is a data matrix consisting of 4 objects and 4 attributes. The graph G on the right depicts these objects.
Notice that Object 2=object 1+15 (addition), Object 3=object 1*2 (multiplication), and Object 4 is a mirror
image of Object 1 with respect to 20.
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Resemblance Coefficients for Quantitative attributes

1. Euclidean Distance Coefficient, ey

(dissimilarity coefficient)
1

m .
eﬂc—|: 3 (}ﬂj—X}k)i| ,0<er=w
i=1

1

Cik = < X*_] - X*k, X*_] - X = p)

= [ (X - Xo1) | (Xvj - X2
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Resemblance Coefficients for Quantitative attributes

2. Average Euclidean Distance Coefficient, djx

(dissimilarity coefficient)

1
dfk:[iﬂg(l’ﬁ)ﬁk)z]z L0<dx<w
=l

1

di=[ - (X - X T (Ko - X))

35



Resemblance Coefficients for Quantitative attributes

2. Average Euclidean Distance Coefficient, d;,

Example (UPGMA):

X

15
29.7
229

X

X

15.6
35.7

X
X

X

513

X

15
10
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Resemblance Coefficients for Quantitative attributes

3. The Coefficient of Shape Difference, Zj

(dissimilarity coefficient)

2
T = ”"jl(djjqu)] L0<Zx <o

2
where qij = %[ZXE—ZX-;C}
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Resemblance Coefficients for Quantitative attributes

3. The Coefficient of Shape Difference, Z;,

Example (UPGMA):.

15 |

10

8.54 8.54 X
17.1 17.1 256 2
0]

MM M

38



Resemblance Coefficients for Quantitative attributes

4. The Cosine Coefficient, Cj

(similarity coefficient)

i XiXik
Cj;r'ﬁc — i=1

1 N
{i X'xjﬁ }h {i X}k ] |
=1 =1

X+ X+

Cx=COSa =
REFer

where o is the angle between vectors j and k.

-1.0<Cp<1.0
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Resemblance Coefficients for Quantitative attributes

4. The Cosine Coefficient, C;,

Example (UPGMA):.

A
X X X X ‘

S= 0.996 X X X 0.7

1.0 0.996 X X
0672 0.732 0.672 X
1.0
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Resemblance Coefficients for Quantitative attributes

5. The Correlation Coefficient, ri
(Sim Ila“ty cu

Zm: XX — L[Zm: Xﬂ}[i ka}
= m \ o = .-1.0 = Cjp < 1.0

Fik = ; ;
o 1 " z 5 m 1 i 2 5
{Z Xy* - —[Z X;;r} ] {Z Xu® — —[Z X;k] ]
i=1 m \ =1 i=1 m \ o1

Zm: (Xy—f*;XX:k—f*k)
Fik = =l .

[z’” (x@f-fw)T [z (Xm-fwf]

i=1

1
2

COV (X =1, X =x)

1

[VAR (X -;) V4R (X *k)]z
= Cosine of the angle between the centered vectors

jaxzj_ ,ij_ "I)T,and

* . Xok - ey Xmk -

(X4j -
(XK -

allial

ft ft;
f* f*k * )T
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Resemblance Coefficients for Quantitative attributes

5. The Correlation Coefficient, r

Example (UPGMA):.

A
-1.0

X X X X
S= 1.0 X X X 0
1.0 1.0 X X
-1.0 -1.0 -1.0 X 1.0

42



Resemblance Coefficients for Quantitative attributes

Coefticient Range Insensitive To
Addition Multiplication

Dissimilarity | ejk 0.0<ex<w No No
dix 0.0<dg<w No No

ak | 00<ar<1.0 No No

b [ 0.0<bx<1.0 No No

Zik 0.0<zg<w Yes No

Similanity | cx || -1.0<cx<1.0 No Yes
k|| -1.0<5x<1.0 Yes Yes
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Hierarchical Clustering

e Agglomerative vs divisive hierarchical algorithm

e The Basic framework for the Agglomerative Algorithms

| 2 n-1 n

1| x X i X X

2 So1 X X X

S—= 3 S31 Sg X o X X
X

n St Sm2 Spp1 X

44



Hierarchical Clustering

e Agglomerative vs divisive hierarchical algorithm

e The Basic framework for the Agglomerative Algorithms

1
2

Begin with n clusters each with one object. Let the clusters be labeled 1 through n.

Search the resemblance matrix for the most similar pair of clusters.

Let p and g be the two similar clusters, with S, as their similarity measure with p>g.

Reduce the number of clusters by 1 by merging the two clusters p and q.

Label the new cluster g and update the resemblance matrix objects to reflect the
revised similarity between the new cluster q and other existing clusters other than p.
Delete the row and column of S that corresponds to the cluster p.

Perform step 2 and step 3 a total of (n-1) times. At each stage record the elements of

each cluster and keep track of all similarity measures at each stage to have a complete
record.

45



Hierarchical Clustering

1. Single Linkage Method ( SLINK )

Spg=min{S;| iet=puq, jer}

46



Hierarchical Clustering

1. Single Linkage Method ( SLINK )

Spg=min{S;| iet=puq, jer}

47



Hierarchical Clustering

1. Single Linkage Method ( SLINK))

Example

X 1s the data matrix

| 2 3 - 5
X X1 10 20 30 30 5
X2 5 20 10 15 10
STEP 1: Compute resemblance matrix, S, using Euclidean distance, e;
1 2 3 4 5
1 B X X X X X ]
2 18.03 X X X X
s= 3| 06 W1 x  x «x Merge (3) and (4)
s 24 M2 5 x  x o get (34)
5 1.07 18.03 25 29.5 X

48



Hierarchical Clustering

1. Single Linkage Method ( SLINK)

Example

STEP 2: Update S
€341 = Min{egy, €4} = Min{20.6, 22.4}= 20.6
€342 = Min{es,, €451 = min{14.1, 11.2}=11.2
€@a)5 = MiN{€ss, €45} = MIN{25, 25.5}= 25

1 2 5 (7))
1 X X X X
2 18.03 X X X
SE) 7.07 18.03 X X
(34) 20.6 11.2 25 X

Merge (1) and (5) to get (15)



Hierarchical Clustering

1. Single Linkage Method ( SLINK)

Example

STEP 3: Update S
€5)2 = Min{e;,, €5,} = Min{18.03, 18.03}= 18.03
€15)34) = MIN{€13, €14, €53, €54} = MIN{20.6, 22.4, 25, 25.5}= 20.6

2 (34) (15)
2 X X X
S= (34) 11.2 X X
(15) 18.03 20.6 X

Merge (2) and (34) to get (234)

50



Hierarchical Clustering

1. Single Linkage Method ( SLINK)

Example

STEP 4: Update S

€15)(234) = MIN{ €15, €13, €14, €5y, €53, €54}
= min{18.03, 20.6, 22.4, 18.03, 25, 25.5}= 18.03

(15)  (234)
(15) X X
S=  (234) 18.03 X

Merge (15) and (234) to get (12345)
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Hierarchical Clustering

1. Single Linkage Method ( SLINK)

Example

18.03

11.2

7.07
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Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Sp=max{S;| let=puq, jer}
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Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Sp=max{S;| let=puq, jer}

o4



Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Example

X 1s the data matrix

1 2 3 - 5
X X1 10 20 30 30 5
X2 5 20 10 15 10
STEP 1: Compute resemblance matrix, S, using Euclidean distance, e;
1 2 3 4 5
1 x X X X X |
2 | 1803 X X X X | Merge (3)and (4)
S= 3 20.6 14.1 X X X to get (34)
4 22.4 11.2 5 X X
5 1.07 18.03 25 25.5 X
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Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Example

STEP 2: Update S
€iay1 = Max{es;, €4} = Max{20.6, 22.4}=22.4
€42 = Max{€s,, €4} = max{14.1, 11.2}=14.1
€45 = Max{ezs, €45 = Max{25, 25.5}= 25.5

1 2 5 (34)
1 X X X X
2 18.03 X X X
S 7.07 18.03 X X
(34) 22.4 14.1 25.5 X

Merge (1) and (5) to get (15)



Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Example

STEP 3: Update S
€152 = Max{e,, es,} = max{18.03, 18.03}= 18.03
€15)34) = Max{€y3, €14, €53, €54} = Max{20.6, 22.4, 25, 25.5}= 25.5

2 (34) (15)
2 X X X
S= (34) 14.1 X X
(15) 18.03 25.5 X

Merge (2) and (34) to get (234)
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Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Example

STEP 4: Update S

€15)234) = Max{ €15, €13, €14, €5y, €53, €54}
= max{18.03, 20.6, 22.4, 18.03, 25, 25.5}=25.5

(15)  (234)
(15) X X
S= (234) | 255 X

Merge (15) and (234) to get (12345)
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Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Example

255

141
7.07

A 4

59



Hierarchical Clustering

2. Complete Linkage Method ( CLINK)

Example
A
25.5 18.03
14.1 1.2
7.07 .07
. 5

60



Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method

At each step it makes whichever merger of two clusters
that will result in the smallest increase in the value of
variance, E. The value of E at the beginning is zero, E=O0.

61



Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method
Example

X 1s the data matrix

1 2 3 4 5
X  xi 100 20 30 30 5
x2 |5 20 10 15 10 |

E= (10-10)2+(5-5) 2|4 (20-20) 2+(20-20) 2 +|(30-30) 2+(10-10) 2

cluster 1 cluster 2 cluster 3

+{(30-30)2+(15-15) 2|+|(5-5) ?+(10-10) 2| =0.0

cluster 4 cluster 5
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Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method

Example

STEP 1

Compute E for all possible mergers,

Possible Mergers =
(12) 3 4 5 162.5
(13 2 4 5 212.5
(14) 2 3 5 250
(15) 2 3 4 25
(23) 1 4 5 100
(24) 1 3 5 62.5
25) 1 3 4 162.5
34 1 2 5 12.5
(3) 1 2 4 312.5
) 1 2 3 325

merging (3) and (4),
gives 1, 2, (34), 5
at the value of E=12.5

X



Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method
Example

To show how E computed, let’s take the first one: (12), 3,4, 5.

First, we must calculate the mean for (12). Itis

10e20_15 220_, 5

p) p)

For the first possible merger the value of E is

64



Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method

Example

E= | (10-15)2+(5-12.5) 2 + (20-15) 2+(20-12.5) 2

cluster (12)

+ (30-30) 2+(10-10) 2| +

cluster 3

cluster 5

(30-30)2+(15-15) 2

cluster 4

+| (5-5)2+(10-10)2 | =162.5
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Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method
Example

STEP 2 With Ward’s method, objects merge at previous clustering
steps are never unmerged. Thus, at the beginning of
step 2 there are six possible mergers of two clusters.

Possible Mergers E
(34) (12 5 175.0
(34)  (15) 2 37.5
(34) (25 1 175.0
(134) 2 5 316.7
(234) 1 5 116.7
(345) 1 2 433.3

merging (1) and (5), gives 2, (34), (15) at the value of E =37.5
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Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method
Example

The set of clusters 2, (34) , (15) is chosen because it gives the smallest value of E;

E= | (20-20)2+(20-20) 2

cluster 2

+|(30-30) 24+(10-12.5) 2 + (30-30)2+(15-12.5)2
cluster (34)

+|(10-7.5) 2+(5-7.5) 2 + (5-7.5) 2+(1O-7.5) 2 =37.5
cluster 5
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Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method

Example
STEP 3 Compute E for all possible mergers.
Possible Mergers E
(234)  (15) 141.7
(125)  (34) 245.9
(1345) 2 568.6

merging (2) and (34), gives (15), (234) at the value of E =141.7



Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method

Example
STEP 4 Only one other merger is possible, that's (12345).
The cluster mean is:
10+2‘£)+30+30+5_19 5+2O+10+15+10_12
5 ’ 5
The value of E 1s

E=(10-19) +(5-12) +(20-19)* + (20—12)’ +(30-19)" +(10-12) +
(30-19) +(15-12)° +(5-19)° + (10— 12)* =650

merging (15) and (234), gives (12345) at the value of E = 650.
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Hierarchical Clustering

3. Ward’s Minimum Variance Clustering Method

Example

650

141.7
37.5
12.5

70



Hierarchical Clustering

4. Graph Theory algorithm for Single-Linkage
Assume a dissimilarity matrix.

1 begin with the disjoint clustering, which places each object in its own cluster.
Find a MST on G(w)
Repeat steps 2 and 3 until all objects are in one cluster.

2 Merge the two clusters connected by the MST edge with the smallest weight to
define the next clustering.

3 Replace the weight of the edge selected in STEP 2 by a weight larger than the
largest similarity.

A divisive algorithm is just as simple. Cut the edge in the MST in the order of
weight, cutting the largest first. Each cut defines a new clustering, with those
objects connected in the MST at any stage belonging to the same cluster.
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Hierarchical Clustering

4. Graph Theory algorithm for Single-Linkage

Example

Let S be the dissimilarity matrix.

| 2 3 -

| X X X X

2 2.3 X X X

S= 3 3.4 2.6 X X
- 1.2 1.8 4.2 X

5 3.7 4.6 0.7 4.4




Hierarchical Clustering

4. Graph Theory algorithm for Single-Linkage

Example

Let S be the dissimilarity matrix.

2 3 4
1 X X X
2 2.3 X X X
S= 3 3.4 2.6 X X
4 | 1.8 4.2 X
5 3.7 4.6 0.7 4.4
5 3 S5 07 3
A@ : 26
y) )
1.8
1 1 1.2
4 4
Complete Graph G(o0) MST
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Hierarchical Clustering

4. Graph Theory algorithm for Single-Linkage

Example

5 3
=4
' 4
Complete Graph G(0)

Agqglomerative

35)
2.6
2
1.8
1 1.2
4

> 07 3
2.6
2

1.8
1.2

MST

Divisive
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Hierarchical Clustering
4. Graph Theory algorithm for Single-Linkage

Example

Agglomerative Divisive
R

35) 5 07 3
2.6 ¢ °
2 2
1.8 1.8
1 1.2 1 1.2
4
35)
2.6
2
1.8

(14) 4



Hierarchical Clustering
4. Graph Theory algorithm for Single-Linkage

Example _ .
Agglomerative Divisive
R ——
35) 5 07 3

2.6

[EEN
[EEN
o
N
[EEN
=
N
o
oo
N

1.2

4
= 5 07 3
2.6 o——o
2
1 1.2
(14) 4
35 5 3
)26 s 07 ¢
(124)
°
il [ ]



Hierarchical Clustering
4. Graph Theory algorithm for Single-Linkage

Example _ .
Agglomerative Divisive
) 5 07 3
2.6 e
2
18 — .
1 1.2
(14) 4
35 5 3
)26 o 07
(124)
°
1 o
5 3
® ®
® (12345)
°
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Hierarchical Clustering

4. Graph Theory algorithm for Single-Linkage

Example

2.6

1.8

1.2

0.7

v
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Partitional Clustering

e Statement of the problem of partitional clustering.
e The basic idea of partitional clustering method
e Initial Partition

m Seed Points

79



Partitional Clustering

Seed Points:
1. Choose the first k objects in the data set.

2. Label the objects from 1 to n and choose those labeled
n/k, 2n/k, ...., (k-1)n/k, and n.

3. Subjectively choose any k objects from the data set.

4. Label the objects from 1 to n and choose the objects
corresponding to k different random numbers in the range [1,n].

5. Take any desired partition of the objects into k mutually exclusive
clusters and compute the cluster centroids as seed points.
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Partitional Clustering

e Statement of the problem of partitional clustering.
e The basic idea of partitional clustering method
e Initial Partition

m Seed Points

m Initial Partition

81



Partitional Clustering

Initial Partition:
1. Assign each object to the cluster built around the nearest seed point.
This point remains stationary throughout one full pass over all objects.
2. Let each seed point to form a cluster of one member.
Then assign objects one at a time to the cluster with the nearest centroid;

after an object is assigned to a cluster, update the centroid so that it is the
true mean vector for all the objects currently in that cluster.

3. Use hierarchical clustering to obtain an initial partition.

4. The analyst could use his judgment to sort the set of objects into an
initial partition

5. The analyst could rely on some random allocation schemes.
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Partitional Clustering

Statement of the problem of partitional clustering.
The basic idea of partitional clustering method
Initial Partition

m Seed Points

m [nitial Partition

Criteria for Partitional Clustering

83



Partitional Clustering

Criteria for Partitional Clustering :

Let X=[Xeq, Xeg, coonnn ol s
The problem is to partition X into k clusters, such that
X=C1 u C u ... uCk, and Cir’"\Cj
andi+#j
k
Let ICi| = n; and > m=n
i=1

¢,
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Partitional Clustering

Criteria for Partitional Clustering :

1. Sum-of-Squared error Criterion
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Criteria for Partitional Clustering :

1. Sum-of-Squared error Criterion

The centroid of cluster C;,
|

mi:—_ ZX*;‘

The square-error J; for cluster C; is the sum of the squared Euclidean
distance between each object in C, and its cluster centroid m;,

Ji = Z X‘j—miHl
X+ieCi
= Z(X*j—mi)T(X*j—mi)
A=jeCi

The square-error, J, for the entire clustering containing k clusters is the sum
of square-error of the individual clusters,

ic
Je = Zufi
i=1
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Criteria for Partitional Clustering :

1. Sum-of-Squared error Criterion

ic
Je = Zufi
i=1

The objective of a partitional clustering algorithm based on the square-
error criterion is to find a partition that minimizes J..
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Partitional Clustering

Criteria for Partitional Clustering :

1. Sum-of-Squared error Criterion

2. Scatter matrix Criterion
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Criteria for Partitional Clustering :

2. Scatter matrix Criterion

Let m, be the mean of the it" cluster C; ,and m be the pooled mean of all objects in X,
| I & =
mi:—ZX‘j , m:—ZX‘j:—Z?’?imi
Hi X=eC n J=1 n J=1
Define S; to be the scatter matrix for the it" cluster,
Si = Z(X*j—miXX*j—mi)T
X+ieCi
The within-cluster,kSW, is the sum of scatter matrices of the individual clusters,

Sw = Z Si
i=l

The between-clust%r scatter matrix, Sg , is defined as

Sz =" ni(m:—m)(m: - m) ST - SB o SW

i=1

The total clusters scatter matrix, S, is defined as
Sr= > (X+;—mfX+«,—m)

X*jeCi
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Criteria for Partitional Clustering :

2. Scatter matrix Criterion

A good partition can be obtained by minimizing the trace of S,,.
k
i=1

By expansion

HS)=3 3 (X ey mf (X -~ m)

i=1 X=*jeCi

tf(Sw) =Je
Therefore minimizing tr(S,,) iImmediately implies that

r(Ss)= 3" s — )" (ms— )

i=1
IS maximized, and hence, the resulting partition is optimal.
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Partitional Clustering

Statement of the problem of partitional clustering.
The basic idea of partitional clustering method
Initial Partition

m Seed Points

m [nitial Partition

Criteria for Partitional Clustering

Partitional Clustering algorithms
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Partitional Clustering algorithms:

1. Frogy’s algorithms

1. Begin with any desired initial partition. Go to step 2 if beginning

with a set of seed points; go to step 3 if beginning with a partition of
the objects.

2. Allocate each object to the cluster with the nearest seed point.
The seed points remain fixed for a full cycle through the entire set of
objects.

3. Compute new seed points as the centroids of the clusters of objects.

4. .Repeat steps 2and 3 until no objects change their clsuter
membership at step 2.
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Partitional Clustering algorithms:

2. MacQueen’s k-Means algorithms

1. Take the first k objects in the data set as clusters of one
member each.

2. Assign each of the remaining (n — k) objects to the cluster with
the nearest centroid. Recompute the centroid of the gaining cluster
after each assignment.

3. After all objects have been assigned in step 2, take the existing

cluster centroids as fixed seed points and make one more pass
through the objects assigning each object to the nearest seed point.
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Partitional Clustering algorithms:

2. MacQueen’s k-Means algorithms

Anderberqg’s convergent version of this method:

1. Begin with an initial partition of the objects into clusters.

2. Take each object in sequence and compute the distances to all

cluster centroids; if the nearest centroid is not that of object’s parent
cluster, then reassign the data unit and update the centroids of the
losing and gaining clusters.

3. Repeat step 2 until convergence is achieved ; that is, continue

until a full cycle through the objects fails to cause any change in
cluster membership.
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Partitional Clustering algorithms:

3. Square-Error Clustering algorithms

Let y e C. Decide to move objecty from C; to C;. As result of this
move, the quantities m;, J, m;, and J; will change. Let m/, J7, m/’, and J;
be the value of these quantities after the move. Then

— 1 1 2
mj*:i‘ﬂf+y : Jpr=Ji+ HJ’_m.fH
?‘Ij-l-l ?‘Ij+1
— i Hi 2
m* = m; -2 : JF=J - ‘y—ms
ni—1 n—1

Therefore, the transferof y fromC; to C; is welcome only if
x> -

which Is same as
i

ni—1

2 H;

>——[y—m
n+1 g ’

|y =mi
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Partitional Clustering algorithms:

3. Square-Error Clustering algorithms

An Iterative algorithm using this method can be described as follows.

1. Select an initial partition of the n objects into k clusters and
compute m; and Je
LOOP:
2. Selecta candidate formove y e C;
3. IF n; = 1 ,g0to NEXT
ELSE compute
1
ni+ 1

L] #d

|y — m;

R;

i

|y - m;-”z, j=i

L ni—1
4. Transfer y toCyx if R¢<R; forall |

5. Update mj, my , Je

NEXT

6. IF Je¢ has notchanged in n steps then STOP

ELSE goto LOOP.
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Application of Cluster Analysis in Meteorology

e Ensemble Forecasting

IS the process of introducing small perturbations to the
Initial conditions and examining their growth in order to
determine the predictability of model forecasts [MITT95]

[MITT95] Jon Mittelstadt, “Introduction to Ensemble Forecasting”, Western Region
Technical Attachement No. 95-29, Nov. 21, 1995, Salt Lake City, UT
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Application of Cluster Analysis in Meteorology

e Ensemble Forecasting
e An “ensemble’

IS a set of model solutions such that each solution, or “member”, is
initiated with a slightly different set of initial conditions. The different
members are created by introducing small errors, called
“perturbations” to the initial conditions of a “control forecast”.
Statistically, the ensemble mean should , over time, result in better
skill than the individual members [MITT95].

[MITT95] Jon Mittelstadt, “Introduction to Ensemble Forecasting”, Western Region
Technical Attachement No. 95-29, Nov. 21, 1995, Salt Lake City, UT
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Application of Cluster Analysis in Meteorology

e Objective

A sequence of daily hemispheric weather maps is defined to constitute a
persistent or quasi-stationary (QS) events, if the spatial correlation between
any pair of maps within the sequence exceeds a given threshold P, say P,
= 0.5, and if the duration of the event so defined also exceeds a given
threshold [MOGHILS88].

[MOGHIL88] K. Mo, M. Ghil, “Cluster Analysis of Multiple Planetary Flow Regimes”,
Journal o f Geophysical Research, Vol. 93, No. D9, pp 10927-10952, Sep. 20, 1988
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Application of Cluster Analysis in Meteorology

e Models and preparation of the Data sets

m a model that is obtained from extended integrations of a very simple,
deterministic, nonlinear mode of NH flow.

m a set of 500-mbar geopotential height maps for NH winter.
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Application of Cluster Analysis in Meteorology
Criteria

1. Membership criterion.

The pattern correlation between the center of a clusterc and any element ¢; in the cluster

should exceed a threshold 1,

v

p(c,d) =Y aev 21

v=1
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Application of Cluster Analysis in Meteorology
Criteria

1. Membership criterion.

2. Separation criterion.

The pattern correlation between the centers of two clusters, b and c, say, should not

exceed a threshold r;,

p(E,E ) :ZBVEV < 12
v=1
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Application of Cluster Analysis in Meteorology
Criteria

1. Membership criterion.
2. Separation criterion.
3. Exclusion criterion.

[f a map ¢ does not correlate sufficiently well with the centercs of any cluster,
p(q)a ) <1
and it does not satisfy the separation criterion for at least one clusterce | say,

p(q), Eko) > 1

then ¢ belongs to the nonrecurring cluster.
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Application of Cluster Analysis in Meteorology
Criteria

1. Membership criterion.
2. Separation criterion.
3. Exclusion criterion.

4. Small-anomaly criterion.
A map ¢(x,t,) belongs to the small-anomaly cluster, rather than to one of the

significant clusters or to the special, nonrecurrent cluster , if its distance to the

origin is less than or equals a given threshold d,
1

() = {z 42 (fn)}z <dy
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Application of Cluster Analysis in Meteorology
Criteria

1. Membership criterion.
2. Separation criterion.
3. Exclusion criterion.

4. Small-anomaly criterion.

5. Small cluster criterion.

Clusters with less than L, elements are assigned to the special,
nonrecurrent cluster. For model results, L, = 25 and for NH data, L, = 8.
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Application of Cluster Analysis in Meteorology
Criteria

[MOGHIL88] K. Mo, M. Ghil, “Cluster Analysis of Multiple Planetary Flow Regimes”, Journal o f
Geophysical Research, Vol. 93, No. D9, pp 10927-10952, Sep. 20, 1988

107




Application of Cluster Analysis in Meteorology
Seed points Algorithm

Step Al. Take any map in the time series as point 1.
Step A2. Proceed through the sequence, calculating the correlations p(¢,
between any given map ¢(x,t) and existing centers of cluster c............ Cn
IF p(d, <. )>r; THEN
¢ 1s assigned to cluster C, and ., is recomputed.
IF, on the other hand, p(¢, )< r, forall «, k=1,...m, THEN
¢ is allowed to form a new cluster, = ¢+
IF the exclusion is satisfied, THEN
¢ Is assigned to the special, diffuse cluster.
Step A3. Keep centered fixed and make one pass through the data, assigning
points ¢ to existing clusters if p(¢, . ) > r, for some k, and to the
diffuse cluster otherwise.
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