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BASIC TECHNIQUES 

 Clustering 
 Principle component analysis (PCA) 
 Time series analysis 
 Singular spectrum analysis 
 Disriminant analysis 
 Pattern recognition and learning 
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Clustering: An Overview 
 Introduction 
 Basic definitions 
 Framework for Cluster Analysis 
 Scales for attributes 
 Standardizing the Data matrix 
 Resemblance coefficients for Quantitative attributes 
 Hierarchical Clustering 
 Partitional Clustering  
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Cluster Analysis is a Classification Technique 

 Multivariable data analysis 
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Hierarchical Partitional

Anil K. Jain, Richard C. Dubes, 1988,  “Algorithms For Clustering Data”, Prentice Hall, NJ. 
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Approaches to carry out Cluster Analysis Algorithms 

 Agglomerative  vs   Divisive  
 Serial     vs     Simultaneous- objects 
 Monothetic   vs   Polythetic - attributes 
 Matrix Theory      vs      Graph Theory 
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Basic Definition 

 Data Matrix 
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Basic Definition 

 Objects 
 Attributes 
Note: Classify objects – Q analysis 
          Classify attributes – R analysis 
 

 Data Matrix 
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Framework for Cluster Analysis 

 Obtain the Data Matrix 

X*j  :  Refers to the jth object 
 Xi* :   Refers to the ith attributes across the n objects. 
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Framework for Cluster Analysis 

 Obtain the Data Matrix 

Example: 
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Framework for Cluster Analysis 

 Obtain the Data Matrix 

 Standardize the Data Matrix 
 Compute the resemblance matrix 
Resemblance Coefficient 
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Resemblance Matrix 



12 

Example: 

1 

5 

3 

4 
2 

X1 

X2 

Euclidean distance  e12=[(10-20)2 + (5-20)2]1/2 = 18.03 
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Example: Resemblance Matrix 
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Framework for Cluster Analysis 

 Obtain the Data Matrix 

 Standardize the Data Matrix 
 Compute the resemblance matrix 
Resemblance Coefficient 

 Execute the clustering method 
What is the clustering method? 
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Example: 
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Example 

a) Merge 3 and 4 to form one cluster (34) => 1, 2, 5, (34) 

 e(34)1 =      [e31 + e41] =     [20.6 + 22.4] = 21.5 

 e(34)2 =      [e32 + e42] =     [14.1 + 11.2] = 12.7 

 e(34)5 =      [e35 + e45] =     [25 + 25.5] = 25.3 

 1 2 5 (34)

1 x x x x

S= 2 18.03 x x x

5 7.07 18.03 x x

(34) 21.5 12.7 25.3 x
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Example 

b) Merge 1 and 5 to form one cluster (15) => (15), (34), 2 

 e(15)2 =     [e12 + e52] =     [18.03 + 18.03] = 18.03 

 e(15)(34) =        [e13 + e14 + e35 + e45] =       [20.6 + 22.4 + 25 + 25.5] = 23.4 

 
2 (15) (34)

2 x x x

S= (15) 18.03 x x

(34) 12.7 23.4 x
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Example 

c) Merge 2 and (34) to form (234)  cluster  => (15), (234) 

 e(15)(234) =        [ e12 + e13 + e14 + e52 + e53 + e54] = 21.6 

(15) (234)

S= (15) x x

(234) 21.6 x
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Example 

d)  The last step is to combine these in a single cluster (12345),  
   and from that the tree can be drawn. 

As we move higher, more  
tolerant and allow differences to  
exist while proclaiming similarities 
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Data Matrix Clusters 
Cluster  
Analysis 
Process 

Input Output 
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Scales for Attributes 

 Nominal scale 

Let X be an attribute and A and B be two objects whose scores  
on the attribute X are XA and XB. 

XA = XB or XA ≠ XB 
Example: binary variables takes two values - true/false values,  
               gender takes two values - Male/Female. 
               colors of a rainbow – 7 values,VIBGYOR 
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Scales for Attributes 

 Nominal scale 

Let X be an attribute and A and B be two objects whose scores  
on the attribute X are XA and XB. 

 Ordinal scale 
XA=XB   ,   XA > XB   , or    XA < XB.   

Example:   rating on a scale of 1 to 10,  

                 grades in a course: A, B, C, D, and F. 
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Scales for Attributes 

 Nominal scale 

Let X be an attribute and A and B be two objects whose scores  
on the attribute X are XA and XB. 

 Ordinal scale 

 Interval scale 
If    XA > XB, one can say A is XA - XB units difference than B.   

Example: when XA=10oC and XB=35 oC ,one can say A is cooler  
                than B by 25oC. 
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Scales for Attributes 

 Nominal scale 

Let X be an attribute and A and B be two objects whose scores  
on the attribute X are XA and XB. 

 Ordinal scale 
 Interval scale 
 Ratio scale 

If XA > XB, then one can say that A is         times superior to B.   
 

Example: Salary. 
 



25 

Scales for Attributes 

 Nominal scale 

Let X be an attribute and A and B be two objects whose scores  
on the attribute X are XA and XB. 

 Ordinal scale 
 Interval scale 
 Ratio scale 

Quantitative / Qualitative attributes 
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Standardizing the Data Matrix 
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Standardizing the Data Matrix 
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Standardizing the Data Matrix 
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Standardizing the Data Matrix 
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Standardizing the Data Matrix 
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Standardizing the Data Matrix 
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Resemblance Coefficients for Quantitative attributes  
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Resemblance Coefficients for Quantitative attributes  

20 

40 

60 

80 

1 

2 

4 

3 

4 

X is a data matrix consisting of 4 objects and 4 attributes. The graph G on the right depicts these objects. 
 Notice that  Object 2=object 1+15 (addition), Object 3=object 1*2 (multiplication), and Object 4 is a mirror 
 image of Object 1 with respect to 20.      
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Resemblance Coefficients for Quantitative attributes  
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Resemblance Coefficients for Quantitative attributes  
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Resemblance Coefficients for Quantitative attributes  

     1       2        3       4 

15 

10 

5 

2. Average Euclidean Distance Coefficient, djk 
 
 

Example  (UPGMA): 
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Resemblance Coefficients for Quantitative attributes  
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Resemblance Coefficients for Quantitative attributes  

3. The Coefficient of Shape Difference, Zjk 
 
 

Example  (UPGMA): 

0 

10 

5 

15 

     1       2        3       4 
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Resemblance Coefficients for Quantitative attributes  
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Resemblance Coefficients for Quantitative attributes  

4. The Cosine Coefficient, Cjk 
 
 

 Example  (UPGMA): 

1.0 

0.7 

1       3         2         4 
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Resemblance Coefficients for Quantitative attributes  
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Resemblance Coefficients for Quantitative attributes  

5. The Correlation Coefficient, rjk 
 
 

 Example  (UPGMA): 

1.0 

-1.0 

0 

      1       2        3       4 
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Resemblance Coefficients for Quantitative attributes  
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Hierarchical Clustering 

 Agglomerative vs divisive hierarchical algorithm 

 The Basic framework for the Agglomerative Algorithms 
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Hierarchical Clustering 

 Agglomerative vs divisive hierarchical algorithm 

 The Basic framework for the Agglomerative Algorithms 

1    Begin with n clusters each with one object.  Let the clusters be labeled 1 through n. 

2    Search the resemblance matrix for the most similar pair of clusters.   
          Let p and q be the two similar clusters, with Spq as their similarity measure with p>q. 

3       Reduce the number of clusters by 1 by merging the two clusters p and q. 
           Label the new cluster q and update the resemblance matrix objects to reflect the  
           revised similarity between the new cluster q and other existing clusters other than p.  
           Delete the row and column of  S that corresponds to the cluster p. 

4        Perform step 2 and step 3 a total of (n-1) times.  At each stage record the elements of  
           each cluster and keep track of all similarity measures at each stage to have a complete  
           record. 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK )  

Str = min { Sij  |  i ∈ t = p ∪ q,   j ∈ r} 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK )  

Str = min { Sij  |  i ∈ t = p ∪ q,   j ∈ r} 

q 
r 

p 

p q 

t = p ∪ q 

Str 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK ) 
        Example  

STEP 1:  Compute resemblance matrix, S,  using Euclidean distance, eij 
1 2 3 4 5

1 x x x x x

2 18.03 x x x x

S= 3 20.6 14.1 x x x

4 22.4 11.2 5 x x

5 7.07 18.03 25 25.5 x

Merge (3) and (4) 
 to get (34) 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK ) 
        Example  

STEP 2: Update  S 
 e(34)1 = min{e31, e41} = min{20.6, 22.4}= 20.6 
 e(34)2 = min{e32, e42} = min{14.1, 11.2}= 11.2 
 e(34)5 = min{e35, e45} = min{25, 25.5}= 25 

1 2 5 (34)

1 x x x x

2 18.03 x x x

S= 5 7.07 18.03 x x

(34) 20.6 11.2 25 x

Merge (1) and (5) to get (15) 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK ) 
        Example  

STEP 3:  Update S 
 e(15)2 = min{e12, e52} = min{18.03, 18.03}= 18.03 
 e(15)(34) = min{e13, e14, e53, e54} = min{20.6, 22.4, 25, 25.5}= 20.6 

2 (34) (15)

2 x x x

S= (34) 11.2 x x

(15) 18.03 20.6 x

Merge (2) and (34) to get (234) 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK ) 
        Example  

STEP 4: Update S 
 e(15)(234) = min{ e12, e13, e14, e52, e53, e54}  
              = min{18.03, 20.6, 22.4, 18.03, 25, 25.5}= 18.03 

(15) (234)

(15) x x

S= (234) 18.03 x

Merge (15) and (234) to get (12345) 
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Hierarchical Clustering 

1.  Single Linkage Method ( SLINK ) 
        Example  

5 

7.07 

11.2 

18.03 

  3     4      2      1      5 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK )  

Str = max { Sij |  i ∈ t = p ∪ q,   j ∈ r} 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK )  

Str = max { Sij |  i ∈ t = p ∪ q,   j ∈ r} 

q 
r p 

p q 

t = p ∪ q 

Str 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK ) 
        Example  

STEP 1:  Compute resemblance matrix, S,  using Euclidean distance, eij 

1 2 3 4 5

1 x x x x x

2 18.03 x x x x

S= 3 20.6 14.1 x x x

4 22.4 11.2 5 x x

5 7.07 18.03 25 25.5 x

Merge (3) and (4)  
to get (34) 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK ) 
        Example  

STEP 2: Update  S 
 e(34)1 = max{e31, e41} = max{20.6, 22.4}= 22.4 
 e(34)2 = max{e32, e42} = max{14.1, 11.2}= 14.1 
 e(34)5 = max{e35, e45} = max{25, 25.5}= 25.5 

1 2 5 (34)

1 x X x x

2 18.03 X x x

S= 5 7.07 18.03 x x

(34) 22.4 14.1 25.5 x

Merge (1) and (5) to get (15) 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK ) 
        Example  

STEP 3:  Update S 
 e(15)2 = max{e12, e52} = max{18.03, 18.03}= 18.03 
 e(15)(34) = max{e13, e14, e53, e54} = max{20.6, 22.4, 25, 25.5}= 25.5 

2 (34) (15)

2 x x x

S= (34) 14.1 x x

(15) 18.03 25.5 x

Merge (2) and (34) to get (234) 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK ) 
        Example  

STEP 4: Update S 
 e(15)(234) = max{ e12, e13, e14, e52, e53, e54}  
  = max{18.03, 20.6, 22.4, 18.03, 25, 25.5}= 25.5 

(15) (234)

(15) x x

S= (234) 25.5 x

Merge (15) and (234) to get (12345) 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK ) 
        Example  

5 

7.07 

14.1 

25.5 

     3     4      2    1      5 
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Hierarchical Clustering 

2.  Complete Linkage Method ( CLINK ) 
        Example  

5 

7.07 

14.1 

25.5 

     3     4      2    1      5 

5 

7.07 

11.2 

18.03 

  3     4      2      1      5 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 

At each step it makes whichever merger of two clusters  
that will result in the smallest increase in the value of  
variance, E. The value of E at the beginning is zero, E=0. 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

 
E= (10-10)2+(5-5) 2 + (20-20) 2+(20-20) 2 + (30-30) 2+(10-10) 2  
            cluster 1                      cluster 2                           cluster 3 

 
       + (30-30)2+(15-15) 2 + (5-5) 2+(10-10) 2    = 0.0 
                 cluster 4                        cluster 5 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

STEP 1      Compute E for all possible mergers,  
Possible Mergers E

(12)        3         4           5 162.5

(13)        2         4           5 212.5

(14)        2         3           5 250

(15)        2         3           4 25

(23)        1         4           5 100

(24)        1         3           5 62.5

(25)        1         3           4 162.5

(34)        1         2           5 12.5

(35)        1         2           4 312.5

(45)        1         2           3 325

merging (3) and (4),  
gives  1 ,  2 ,  (34) ,  5   
at the value of  E = 12.5 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

To show how E computed, let’s take the first one:  (12), 3, 4, 5 .   
First, we must calculate the mean for (12).  It is  

For the first possible merger the value of E is 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  
 
E=   (10-15)2+(5-12.5) 2 + (20-15) 2+(20-12.5) 2  
                                  cluster (12) 

 
      +  (30-30) 2+(10-10) 2   +   (30-30)2+(15-15) 2  
                      cluster 3                              cluster 4  

 
      +  (5-5) 2+(10-10) 2      = 162.5 
                  cluster 5 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

STEP 2     With Ward’s method, objects merge at previous clustering 
                 steps are never unmerged.  Thus, at the beginning of  
                 step 2 there are six possible mergers of two clusters.  

Possible Mergers E

(34)        (12)         5 175.0

(34)        (15)         2 37.5

(34)        (25)         1 175.0

(134)        2            5 316.7

(234)        1            5 116.7

(345)        1            2 433.3

merging (1) and (5), gives  2,  (34) ,  (15) at the value of  E = 37.5 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

The set of clusters 2, (34) , (15) is chosen because it gives the smallest value of E; 
 

 
E=   (20-20)2+(20-20) 2 
                cluster 2 

 
      +  (30-30) 2+(10-12.5) 2  + (30-30)2+(15-12.5) 2  
                                         cluster (34)        

 
      +  (10-7.5) 2+(5-7.5) 2 + (5-7.5) 2+(10-7.5) 2           = 37.5 
                  cluster 5 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

STEP 3  Compute E for all possible mergers. 

Possible Mergers E

(234)        (15) 141.7

(125)        (34) 245.9

(1345)         2 568.6

merging (2) and (34), gives  (15) , (234)  at the value of   E = 141.7 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

STEP 4  Only one other merger is possible, that’s (12345). 
  The cluster mean is: 

merging (15) and (234), gives (12345) at the value of   E = 650. 
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Hierarchical Clustering 

3. Ward’s Minimum Variance Clustering Method 
        Example  

12.5 

141.7 
37.5 

650 

       3        4        2       1         5 
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Hierarchical Clustering 

4. Graph Theory algorithm for Single-Linkage 
Assume a dissimilarity matrix.  

1 begin with the disjoint clustering, which places each object in its own cluster. 
    Find a MST on G(∞) 
    Repeat steps 2 and 3 until all objects are in one cluster. 
 
2 Merge the two clusters connected by the MST edge with the smallest weight to  
    define the next clustering.  

3 Replace the weight of the edge selected in STEP 2 by a weight larger than the  
    largest similarity. 

A divisive algorithm is just as simple.  Cut the edge in the MST in the order of 
weight, cutting the largest first.  Each cut defines a new clustering, with those 
objects connected in the MST at any stage belonging to the same cluster. 
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Hierarchical Clustering 

4. Graph Theory algorithm for Single-Linkage 
        Example  
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Hierarchical Clustering 

4. Graph Theory algorithm for Single-Linkage 
        Example  

5 3 

2 

4 
1 

5 3 

2 

4 
1 

0.7 
2.6 

1.8 
1.2 

Complete Graph  G(∞) MST 
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Hierarchical Clustering 

4. Graph Theory algorithm for Single-Linkage 
        Example  

5 3 

2 

4 
1 

5 3 

2 

4 
1 

0.7 
2.6 

1.8 
1.2 

Complete Graph  G(∞) MST 

(35) 

2 

4 
1 

2.6 

1.8 
1.2 

5 3 

2 

4 
1 

0.7 

1.8 
1.2 

Agglomerative Divisive 
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Hierarchical Clustering 
4. Graph Theory algorithm for Single-Linkage 
        Example  

(35) 

2 

4 
1 

2.6 

1.8 
1.2 

5 3 

2 

4 
1 

0.7 

1.8 
1.2 

(35) 

2 

(14) 

2.6 

1.8 

5 3 

2 

4 
1 

0.7 

1.2 

Agglomerative Divisive 
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Hierarchical Clustering 
4. Graph Theory algorithm for Single-Linkage 
        Example  

(35) 

2 

4 
1 

2.6 

1.8 
1.2 

5 3 

2 

4 
1 

0.7 

1.8 
1.2 

(35) 

2 

(14) 

2.6 

1.8 

5 3 

2 

4 
1 

0.7 

1.2 

Agglomerative Divisive 

(35) 

(124) 
2.6 

5 3 

2 

4 
1 

0.7 
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Hierarchical Clustering 
4. Graph Theory algorithm for Single-Linkage 
        Example  

(35) 

2 

(14) 

2.6 

1.8 

5 3 

2 

4 
1 

0.7 

1.2 

Agglomerative Divisive 

(35) 

(124) 
2.6 

5 3 

2 

4 
1 

0.7 

(12345) 

5 3 

2 

4 
1 
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Hierarchical Clustering 

4. Graph Theory algorithm for Single-Linkage 
        Example  

0.7 

1.8 

1.2 

2.6 

3      5     1    4      2 
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Partitional Clustering 

 Statement of  the problem of partitional clustering. 
 The basic idea of partitional clustering method  
 Initial Partition 

 Seed Points 
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Partitional Clustering 

5. Take any desired partition of the objects into k mutually exclusive 
     clusters and compute the cluster centroids as seed points.  

Seed Points: 
1. Choose the first k objects in the data set. 

2. Label the objects from 1 to n and choose those labeled  
 n/k, 2n/k, ...., (k-1)n/k, and n. 

3. Subjectively choose any k objects from the data set. 

4. Label the objects  from 1 to n and choose the objects  
    corresponding to k different random numbers in the range [1,n]. 
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Partitional Clustering 

 Statement of  the problem of partitional clustering. 
 The basic idea of partitional clustering method  
 Initial Partition 

 Seed Points 
  Initial Partition 
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Partitional Clustering 

5. The analyst could rely on some random allocation schemes. 

Initial Partition: 
1. Assign each object to the cluster built around the nearest seed point.   
    This point remains stationary throughout one full pass over all objects.  
2. Let each seed point to form a cluster of one member.  
    Then assign objects one at a time to the cluster with the nearest centroid;  
    after an object is assigned to a cluster, update the centroid so that it is the  
    true mean vector for all the objects currently in that cluster. 
3. Use hierarchical clustering to obtain an initial partition.  

4. The analyst could use his judgment to sort the set of objects into an 
     initial partition 
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Partitional Clustering 

 Statement of  the problem of partitional clustering. 
 The basic idea of partitional clustering method  
 Initial Partition 

 Seed Points 
 Initial Partition 

  Criteria for  Partitional Clustering 
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Partitional Clustering 

Criteria for  Partitional Clustering : 
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Partitional Clustering 

Criteria for  Partitional Clustering : 

1. Sum-of-Squared error Criterion 
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Criteria for  Partitional Clustering : 

1. Sum-of-Squared error Criterion 

The centroid of cluster Ci,  

The square-error Ji for cluster Ci is the sum of the squared Euclidean 
distance between each object in Ci and its cluster centroid mi, 

The square-error, Je, for the entire clustering containing k clusters is the sum 
of square-error of the individual clusters, 
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Criteria for  Partitional Clustering : 

1. Sum-of-Squared error Criterion 

The objective of a partitional clustering algorithm based on the square-
error criterion is to find a partition that minimizes Je. 
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Partitional Clustering 

Criteria for  Partitional Clustering : 

1. Sum-of-Squared error Criterion 

2. Scatter matrix Criterion 
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Criteria for  Partitional Clustering : 

2. Scatter matrix Criterion 

Let mi be the mean of the ith cluster Ci   ,and  m  be the pooled mean of all objects in X, 

Define Si to be the scatter matrix for the ith cluster, 

The within-cluster, SW, is the sum of scatter matrices of the individual clusters, 

The between-cluster scatter matrix, SB , is defined as  

The total clusters scatter matrix, ST , is defined as 

ST = SB  +  SW  
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Criteria for  Partitional Clustering : 

2. Scatter matrix Criterion 

A good partition can be obtained by minimizing the trace of  SW. 

Therefore minimizing   tr(SW)  immediately implies that  

is maximized, and hence, the resulting partition is optimal. 
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Partitional Clustering 

 Statement of  the problem of partitional clustering. 
 The basic idea of partitional clustering method  
 Initial Partition 

 Seed Points 
 Initial Partition 

  Criteria for  Partitional Clustering 

 Partitional Clustering algorithms 
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Partitional Clustering algorithms: 

1. Frogy’s algorithms 

1. Begin with any desired initial partition.  Go to step 2 if beginning 
with a set of seed points; go to step 3 if beginning with a partition of 
the objects. 

2. Allocate each object to the cluster with the nearest seed point.  
The seed points remain fixed for a full cycle through the entire set of 
objects. 

3. Compute new seed points as the centroids of the clusters of objects. 

4. .Repeat steps 2and 3 until no objects change their clsuter 
membership at step 2. 
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Partitional Clustering algorithms: 

2. MacQueen’s k-Means algorithms 

1. Take the first  k objects in the data set as clusters of one 
member each. 

2. Assign each of the remaining  (n – k) objects to the cluster with 
the nearest centroid. Recompute the centroid of the gaining cluster 
after each assignment. 

3. After all objects have been assigned in step 2, take the existing 
cluster centroids as fixed seed points and make one more pass 
through the objects assigning each object to the nearest seed point. 
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Partitional Clustering algorithms: 

2. MacQueen’s k-Means algorithms 

1. Begin with an initial partition of the objects into clusters. 

2. Take each object in sequence and compute the distances to all 
cluster centroids; if the nearest centroid is not that of object’s parent 
cluster, then reassign the data unit and update the centroids of  the 
losing and gaining clusters. 

3. Repeat step 2 until convergence is achieved ; that is, continue 
until a full cycle through the objects fails to cause any change in 
cluster membership. 

Anderberg’s convergent version of this method: 
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Partitional Clustering algorithms: 

3. Square-Error Clustering algorithms 

Let    y ∈ C .  Decide to move object y from Ci to Cj.  As result of this 
move, the quantities mj, Jj, mi, and Ji will change.  Let mj

*, Jj
*, mi

*, and Ji
* 

be the value of these quantities after the move.  Then 

Therefore, the transfer of      y     from Ci   to   Cj   is welcome only if  

which is same as  
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Partitional Clustering algorithms: 

3. Square-Error Clustering algorithms 
An iterative algorithm using this method can be described as follows. 
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Application of Cluster Analysis in Meteorology 

 Ensemble Forecasting  
is the process of introducing small perturbations to the 
initial conditions and examining their growth in order to 
determine the predictability of model forecasts [MITT95] 
 
 
 
 
[MITT95] Jon Mittelstadt, “Introduction to Ensemble Forecasting”, Western Region 
Technical Attachement No. 95-29, Nov. 21, 1995, Salt Lake City, UT 
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Application of Cluster Analysis in Meteorology 

 Ensemble Forecasting 
 An “ensemble” 

is a set of model solutions such that each solution, or “member”, is 
initiated with a slightly different set of initial conditions.  The different 
members are created by introducing small errors, called 
“perturbations” to the initial conditions of a “control forecast”.  
Statistically, the ensemble mean should , over time, result in better 
skill than the individual members [MITT95]. 

 
[MITT95] Jon Mittelstadt, “Introduction to Ensemble Forecasting”, Western Region 
Technical Attachement No. 95-29, Nov. 21, 1995, Salt Lake City, UT 
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Application of Cluster Analysis in Meteorology 

 Objective 

A sequence of daily hemispheric weather maps is defined to constitute a 
persistent or quasi-stationary (QS) events, if the spatial correlation between 
any pair of maps within the sequence exceeds a given threshold Po, say Po 
= 0.5, and if the duration of the event so defined also exceeds a given 
threshold [MOGHIL88]. 

  
[MOGHIL88] K. Mo, M. Ghil, “Cluster Analysis of Multiple Planetary Flow Regimes”, 
Journal o f Geophysical Research, Vol. 93, No. D9, pp 10927-10952, Sep. 20, 1988 
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Application of Cluster Analysis in Meteorology 

 Models and preparation of the Data sets 

 a model that is obtained from extended integrations of a very simple, 
deterministic, nonlinear mode of NH flow. 

 a set of 500-mbar geopotential height maps for NH winter. 
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Application of Cluster Analysis in Meteorology 

1.   Membership criterion.  

Criteria 
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Application of Cluster Analysis in Meteorology 

1.   Membership criterion.  

2. Separation criterion.  

Criteria 
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Application of Cluster Analysis in Meteorology 

1.   Membership criterion.  

2. Separation criterion.  

3. Exclusion criterion.  

Criteria 
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Application of Cluster Analysis in Meteorology 

1.   Membership criterion.  

2. Separation criterion.  

3. Exclusion criterion.  

4. Small-anomaly  criterion.  
A map φ(x,tn) belongs to the small-anomaly cluster, rather than to one of the 
significant clusters or to the special, nonrecurrent cluster , if its distance to the 
origin is less than or equals a given threshold   d0 

Criteria 
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Application of Cluster Analysis in Meteorology 

1.   Membership criterion.  

2. Separation criterion.  

3. Exclusion criterion.  

4. Small-anomaly  criterion.  

5. Small cluster criterion.  

Clusters with less than Lo elements are assigned to the special, 
nonrecurrent cluster.  For model results, Lo = 25 and for NH data, Lo = 8. 

Criteria 
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Application of 
Cluster Analysis in 

Meteorology 



107 

Application of Cluster Analysis in Meteorology 
Criteria 

[MOGHIL88] K. Mo, M. Ghil, “Cluster Analysis of Multiple Planetary Flow Regimes”, Journal o f 
Geophysical Research, Vol. 93, No. D9, pp 10927-10952, Sep. 20, 1988 
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Seed points 
. 

Step A1.  Take any map in the time series as point 1. 
Step A2. Proceed through the sequence, calculating the correlations p(φ,     ) 
               between any given map φ(x,t) and existing centers of cluster    
 IF         p(φ,     ) >  r1     THEN   

  φ is assigned to cluster Ck and      is recomputed.   
 IF, on the other hand, p(φ,     ) <   r2  for all      , k=1,.....,m, THEN  

  φ is allowed to form a new cluster, φ =          
 IF the exclusion is satisfied, THEN  

  φ is assigned to the special, diffuse cluster. 
Step A3.  Keep centered fixed and make one pass through the data, assigning  
                points φ to existing clusters if    p(φ,     ) >  r1   for some k, and to the  
               diffuse cluster otherwise. 

 

Algorithm 
Application of Cluster Analysis in Meteorology 
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