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Abundance of data

* Thanks to the advances in technology of
* Sensors

* Wireless Communication
* Mass storage devices
* Large super computers

 Shift from data sparse to data rich regime —amount of data doubles in every few years.



Data organization

Time Series : Number of daily new covid infection in a city.

Spatial: Number of infected in every country on a given time.

Spatial-temporal: Monthly rain fall in each of 50 states in the US.

Data Matrix: X: [x;, X,, X;5... X.] , X; € RY, - Represents n points in d- dimensional space.



“Big” in Bigdata

In the matrix form x € R4x" : Two variables.

n - is the number of data (columns).

d - is the dimension of the space (rows)

In general: either n or d or both can be large.

Similar measures apply for other data organization.



Classical Statistics

* In classical mathematical statistics there are a number of asymptotic results obtained by
fixing d and letting the number of samples to increase without bound such that the ratio

g->O

n

* This asymptotic theory provides the basis for estimation theory.



Examples 1

Law of Large Numbers (LLN): If x,, 1 <i < nis i.i.d sequence of random variables from, say
normal distribution N (m, o2) with unknown m.

x(n) =% * 1 x; is an unbiased estimate.
LLN: prob [| X(n)-m| >€]->0orn->e0  comeeeee >1

This is called asymptotic consistency.

Also known as measure concentration.



Examples 2

e Central Limit Theorem (CLT):

* In addition to (1), the following stronger result hold:
v (%(n) —m)

in distribution

* That is, centered and scaled estimate converges in distribution to a standard normal Gaussian
variable.



High dimensional data

* Consider a set of n = 100 color images of a human retina with 256 x 256 = 65, 536 pixels in each of
the three frames representing Red, Blue and Green with a total of d = 65, 536 x 3 = 196, 608
pixels.

e Here x € R4x"n where d >>n

. Inhere,%=a>0 ——————————————————————————————— > (3)



L d
Implications of ~ = a>0

: . : . d :
* Many of the known results from classical statistics when applied to this case, —=a> 0 give only
“suboptimal” guarantees.

* To address this challenge a new specialty is emerging.

* M.J. Wainwright (2019) High-Dimensional Statistics: A non- asymptotic viewpoint, Cambridge
university Press.

e R.Vershynin (2020) High-Dimensional Probability: An Introduction with Application in Data Science
Cambridge University Press.



Curse of dimensionality

Coined by Richard Bellman (1920 — 1984) when developing.

R.Bellman (1952) “Theory of Dynamic Programming”, Proc of NAS, pp 716-719.

Finding optimal solution for multistage decision process often require 29 computation.

The popular Reinforcement Learning (RL) is based on the theory of Markov Decision Process is an
example of the application of DP.



Counter intuitive results in High dimension

Empty space — High dimensional geometry.

Concentration of distances, measures, functions.

Statistical two class classification.

Estimation of covariance matrices.



Hyper cube V_ (d,a) in RY

* V_(d,a) — hypercube of side “a” in RY.
* Diagonal ABin V_(2,1): o 1
2 \271/2 -
AB=2*0A=2[(5) +(5)] =2 2
e Diagonal ABinV,(d,1): Vi(2,1)
\271/2
AB=2*0A=2[2?=1(5) ] =Vd e > (4)

Diagonal increases as vd while the side of the cube remains constraint as d increases.

N[+~ >



Empty space in R9

Volume of V_ (d,a) = a¢.

If we double the side : V_(d, 2a)=29V_(d,a) = =-mmmemmmmmmmeme e

Volume of the cube grows exponentially when you double its side.

Creates a lot of empty space.



Spheres in R4 : V_ (d,r)

* V. (d,r) —a sphere of radius rin RY..

Hd/Z

* Vol [V, (d,r)] =

4 > (6
r(§+1) f (6)

* Forintegerk:T(k+1)=kI(k) andI['(k +1) =k! - > (7)
[(1/2)= I



Unit Sphere : V, (d,1)

/
Vol [V, (d,1) ] = Hd >0 asd-> oo
r(5+1)

Vol [V, (3,1) ] = g I1=4.1867

HlO
Vol [V, (10,1) ] =7—= 0.0258

Question : For what values of r, Vol [V, (d,r) ] =1

Using Strilings approximation to n! :

nl = \2IIn (g)n
Verify r= O( \/c—l) for Vol [V, (d,r) ] =1

Empty space syndrome.



Cube inside a cube

* Consider a unit cube inside a concentric unit sphere in RY.

« Have seen AB =+/d A
e Ford<4,AB<2 andinside the sphere. /
d =4, AB =2 and AB is a diameter. /

d >4, AB > 2 and punches through the sphere.
B

* Forlarge d, 29 diagonals get out of the sphere.

V.(d,1) €V, (d1)
* It looks like the picture of the COVID virus.



Sphere in a Sphere

* Letr <R, concentric spheres of radii r and R.

. Vs(dR)-Vs(dr) _ . Vs(dr)
V<(d,R) ~ 7 V4(d,R)

d
=1- (—) -> 1 as d increases.

(i.e.) Volume of the sphere reside near the empty space shell.



Sphere in a cube

. . _ Vs(dr)
Ratio a = Ve(dzn)
= — == (—) — >0
rG+1) @r) 4 rG+1)
"
as d increases ---------------------- > (9)

* Fraction of the volume of the cube trapped inside the
sphere goes to zero as d increases.

2r

* Empty space at the center and volume of the cube is
concentrated at its 29 corners.



Pairwise distances in R?

* Consider V.(2,1): Generate 1001 independent, identically
distributed in V.(2,1).

Fix one of the point and call it x = (x4, x,)".

Compute for each of the rest of 1000 points
D?(x,y) = [(x1= y1)* + (x2= ¥2)* 1 (y  x).

Clearly 0 < D?(x, y) < 2 for all y # x since |x;— y;| < 1 and
|x2- Y2 <1.

Histogram of D?(x, y) is fully supported on [0,2].

® X

V.(2,1)




Pairwise distances in R%: d =100

Repeat the above experiment in V.(d, 1).

x = (Xg,Xp, o Xg)T
y=UwnY2Ya)

Here with [x;— y;| <1

D2(x, y) = Btk (= y;)? -rrreeeeeeeeeeeeees >(10)

Clearly 0 < D?(x, y) < 100.

A lot more is true — thanks to the law of large numbers.

® X

V.(d, 1)




Concentration of distances

Clearly x;’s and y;’s , (x;— y;)? are i.i.d random variables with finite mean and variance.

is the sum of i.i.d random variables.

D2(x,y) = XL (x;- y;)?

By the law of large numbers, the distribution of D?(x, y) is concentrated in the interval [0,100]
around the mean.

For small d, this distribution is spread out in [0,d] but for large d, it gets concentrated.



Gaussian distribution in R®

e XERY, meRYI ) RIxq,

. Y~ _ 1 1 NT VY1 (v e\

XN (M, 9) = e e 5 (= m)T 27 (x-mi] > (11)
« X~N(0,0%]) = lw_ exp [- & < > (12)
* E[Ix|I?1=dE(x}) =d 6% e > (13)

Since x; are i.i.d N (0, 62).

* For large d, the random variable ||x||? is concentrated about its mean d o?.

« ovd is called the radius of the Gaussian.



Tail probability of N(0,1) in R?!

e Consider N(0,1)

2

e Letr(a) = \/% f_aa exp (%) dx = Area under N(0,1) between —a and a.

0.4

0.35+

a r(a) Tail : 1 —r(a) 0l
1 0.683 0.317 025 |
2 0.955 0.045 0.2}
3 0.997 0.003 o157

0.1r

0.05r

23



Tail probability of N(0,1) in R

* Probability that lies outside a sphere of radius 1.

d 1 2 5 10 20 100

P 0.317 0.1353 0.5494 0.9473 0.999 1.0

* N(O, I) still attains its maximum at x =0.
* For large d, tail has more information.

* Probability of N(0,1) contained in a thin annulus around ||x]|? = d

PIVd-B<||x||?2 <Vd +B] = 1-3 e~*B* where B <+vd and a > 0is a constant.



Chi- square distribution of ||x||

Let x € R¥, x; ~i.i.d. N(0,1) for 1< i<k,

Y = ||x||? = 3K, x? - chi-square distributed with k degrees of freedom given by

1 5_1 -y

* fY(y) = 2k/2 r(g) y2 € 2 memmmmmemmommmeeoommmee—omo—e——ooo-ee > (15)
e Mean of Y = E[||x]|2] = k ——-mmmmmmmmrmeemm - > (16)

Var of Y = VAR(||x||?) = 2K ----—memmmmmreeeemmmm e > (16)



Chi- distribution of |[|x||

* Let Z=||x]|

e Z said to chi-distributed

R I > (17)
2271
F(E41)
* Mean of z = E[||x[|] = V2 rz(k) ---------------------------------- > (18)
2

¢ Var of Z =K - P2 mmmmmmmmmmm e



Properties of ||x|| : concentration of ||x|]
e Setting n =k +1.

* Elllxlll=vA—T1[1--]

n-1 1

* Var ([Ix|l) = == = 2 -ormmmmoemmen oo > (19)
k n E[|IxII] Var (||x]])
10 11 3.09 0.4545
50 51 7.106 0.4902
100 101 10.035 0.4905
500 501 22.35 0.4995

27



Impact of high dimension in statistics: Linear
discriminant analysis : Population based analysis

* Two Gaussian distcr}iaution P, (x)=N(uq, S)and P, (x) =N (u-, 2) ,XERY,

* Mixture : P(x) =p; Py(x) +p, P,(x),p;>0and p; +p, = 1.

* A sample is drawn from P(x) and need to identify which class it belongs to.



Standard Algorithm

Pz(X))

Compute L = log (P o
1

_ +
L=W(X)=<H2‘H1,z 1(X'%)> ---------------------------

Linear statistic.
Optimum decision rule is based on thresholding ¥ (x).

When py; =1and yu, =-1: T =0is a good threshold.



Error probability

*Setp;=p; =%
* Error (W)= % [P;[¥ (X')£0] + P,[W¥ (x") >0] ]

* x"and x”’ are drawn from P; (x) and P, (x).

t2

* Error (W) = \/%_H f_é e 2dt=¢ (-g) ---------------------------------------- > (21)

e 72=(p; — My ) St (My — Ky ) : Mahalanobis Distance.



Sample Counterpart

We do not know the conditional distributions.

* Given a set of labelled samples: {x, x5, ...., X, } from Py (x), {Xpn, 41, Xn 42/ e X, 4n,} from
P,(x)

Sample mean : i = n—lzizlxi and [1; = n_22i=1xi+n1

Pooled sample covariance:
e 1 n o~ T 1
2= — Zii1(xi - - ) A —

n2—1



Fisher’s Linear discriminant function

. & 1. + U
c P () =<, ST (x-S > (22)

« Assume n; >d and ¥ is invertible.

 Error (P) = % [P[P (x) 0]+ P[P (X)) >0]] e > (23)

where x’ and x”’ are samples from P; (x) and P, (x).



Kolmogorov’s analysis (1960’s)

40
M1 li2>

e Assume Y =land P (x) =<7 -, X - .

* When (ny =n, , d) and grow with out bound with ratios % -> o> 0.

* Let|| iy - iz]l -> a constant Y > 0.



Kolmogorov’s Analysis Continued

* |n this scaling:

7,.2

2Vr2+0

Error (P;4) > & (- ) in probability --------------m-m - > (24)

2

2Vr2+0

* Since < g , Error (¥;4) is larger than when a = 0.

* Clear demonstration of high- dimensional effect and resulting sub optimality.

d : .
* When —=as= 0, we get the classical asymptotic result.



Covariance estimation: Effect of high dimension

* Let {xq,x5, ...., X,,} be an i.i.d samples from a distribution with zero mean where x; € R .
* That is, we have n points chosen at random in R9.

o Let x ={xq, X5, ...., X, } € R9%X" — Data matrix.



Estimate Covariance matrix
* Sample Covariance:f::% Loxpxl o= %xxTe Rdxd

« Sisunbiased :E(}) =Y.

* ), -> )., the population covariance as n -> oo when d is fixed — classical convergence.



N

Measure of distance between ) and )

* Matrix norm — spectral norm, can be used ||z - 2”2 = SUP|ju,=1 ||(2 - Z)uHZ ---------------

* It can be proved: ||2 -~ 2”2 ->0andn->o0,

e That is, sample covariance is strongly consistent estimate of ) is classical setting.



High dimensional effect

e Let nand d grow, but % =a € (0,1).

* Estimate 2 and compute its spectrum.

e Let Ay () =220, 2228 = Ay (B) 20.



Special case ); = |

: : d : :
* In this special case when ~=Q€ (0,1) eigen values A; are all dispersed around 1.

Density Density

N1 A g
n = 4000, d = 800, o = 0.2 n = 4000, d = 2000, & = 0.5

* Empirical distribution of A ‘s for a = 0.2 and 0.5.



Marcenko — Pastur law (1967) : Impact of High -
dimension

* M-P law : They proved that the density of distribution of A ‘s is supported on the interval [ t,,,;5,
(@), tiax ()] where t,;, (0) = (1 — Va)? and tmax (0) = (1 + Va)?.

. . d .
* This law allows (d, n) to increase but —=a € (0,1) - has a non — classical flavor.
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