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Factors influencing the coastal morphological changes
- waves, currents, tides, wind
- sediment transport

Changes in waves and currents influence coastal circulation -coastal
geomorphology

Evaluation of coastal morphological changes

Dbeach profiles
 nearshore bathymetry

. Waves

. Currents
« Tides

e wind

beach and nearshore sediments
« longshore sediment transport
 shoreline changes

Spatial and temporal resolution of the data




Waves are the largest contribution of energy from sea to the
beach

wavelength . C :

No perceptible motion due to
waves down here

Deep-water waves: Transitional water waves: Shallow water waves:
d> £ A <d< L d< L
2 20 2 20
C, L and h constant C and L decrease, wave The wave breaks
e over long distances height increases, rounded
ava\ (e tops form peaks Garrison (2010)
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Wave transformation

SHORELINE

Wave propagates from deep to shallow water
(a) Refraction

(b) Shoaling

(c) Diffraction

(d) Dissipation due to friction

(e) Dissipation due to percolation

(f) Breaking

(g) Additional growth due to the wind

(n) Wave-current interaction

() Wave-wave interactions

Refraction _
As waves approach shore, the part of the wave CD“““’*/
in shallow water slows down

The part of the wave in deep water continues at

its original speed

Causes wave crests to refract (bend)

Results in waves lining up nearly parallel to

shore
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Wave refraction




Wave becomes Breaking Swash
higher and wave
steeper ~_

Loops deformed

by friction at
seafloor

Looplike motion
Copyright 1882 John Wiley and Song, Ine, All rights reserved,

Wave shoaling : Change in shape as wave nears the shore

When waves enter shallow water they slow down, the wave length is reduced.
The energy flux remain constant and the reduction in group (transport) speed is
compensated by an increase in wave height (and thus wave energy density).

Wave breaking

wave steepness (H/L) > 1/7 H Wavel heigr:\t
H/d > 0.79. L wave lengt

D water depth
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Wave transformation

Wave propagates from deep to shallow water
(a) Refraction ]
(b) Shoaling

(c) Diffraction

(d) Dissipation due to friction

(e) Dissipation due to percolation

(f) Breaking

(g) Reflection

(h) Additional growth due to the wind
(i) Wave-current interaction

(j)) Wave-wave interactions

Hd

BREAKWATER

Wave energy is reflected
(bounced back) when it hits a
solid object

Wave diffraction
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Breaker type

I. Spilling breakers Il. Plunging breakers Ill. Surging breakers

foam

N -

foam — -~

breakers == 0 o T

nearly horizontal beach steep beach

very steep
beach

« Spilling
« Plunging
e Surging

Plunging breaker

Steep beach

Spilling breaker

Swash

Spilling breaker

Gentle slope beach
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a) Spilling breaking wave

c) Surging breaking wave d) Collapsing breaking wave



WAVES AT EREAKING POINT
CHARACTERIZED BY Hy,T,C
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Wave breaking and longshore current o
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Longuet-Higgins (1970) and others applied the time-
averaging principles to the depth-integrated momentum balance
equation to obtain the longshore current

V =20.7m,(gH, )/2sin(2a, )

Galvin (Galvin and Eagleson, 1965)

V = Kgm, T(sin2a, )




Rip current

Strong, narrow seaward current
from shoreline to the breaker
Zone

Dangerous to swimmers

Rip Head

A\
C . )

Onshore Flow

» . Breaker Region
,/ N ,"\\ ' \\ =\
\ / &4 NGz .
s ~ .
Feeder Currents

V

Feeder Currents

S
g

Shoreline
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 Shepard et al. (1941).




LITTORAL ENVIRONMENTAL OBSERVATION

Station name;

Date & Wave Wave Breaker Breaker  Surf zone Longshore
Time Height (m) period (s) angle type width (m) current speed
(m/minute)
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... longshoresediment transpo

Measurement of Deploying instruments or sediment traps in the surf zone is
LST fluxes challenging and complex

Measurement o . . . . e
: During high breaking wave conditions, the logistical
puanges in difficulties hinder the collection of field data
shoreline and
nearshore

Two fundamental approaches; Both are useful in engineering
practices

Empirical formula: estimate LST rate with few input
Using empirica parameters (e.g., CERC, 1984; Kamphuis, 2002)
formula or Process based models: more spatio-temporal information;
process based accurate LST; but require more information regarding input data
models parameters (e.g.,UNIBEST-CL, Delft3D)




Longshore sediment transport

Walton & Bruno (1989)
KA peH, WV,

() = - . Q = LST rate
n,?a(‘_“) (‘_) K = constant
2/ \vo/ W = surf zone width
v = longshore current velocity (m/s)
H, = breaking wave height (m)
CERC (1984) T = wave per'io.d (s)
: p = mass density of seawater
0 — KA g TH sin 20 (v/v,) = Theoretical dimensionless velocity

6l oLy, = breaker angle with respect to coast
A=U[(ps — plg(l —pll,

Kamphius et al. (2002) Ty =peak wave period (s),
" d50  =sediment mean grain size (mm).
i
B
(p,—p)y(l-p)

JARANTTO) ilk = 2.27H,°T,""m®"d50 **sin(o, )
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Near shore wave, currents and wind variations

Beach and shoreline measurements

>

>

» Wave transformation in surfzone

» Surfzone currents measurements & modelling
>

Longshore sediment transport rates estimation

WW3 - deep water
Delft3D - nearshore
Littoral drift

Process based models

& Bulk formulas

150,000 ——
Il cERC

[ walton and Bruno
[Jkamphius
100,000 Il Komar

° ‘ \ ‘ \ ‘ \

260 270 290

80
Julian days

+ CALCULATED BASED ON WALTON & BRUNO EQN  r=0.71
° CALCULATED BASED ON VAN RIJN r=0.74
***** MEASURED = 0.90 X VAN RIJN
MEASURED = 0.65 X WALTON & BRUNO

3

MEASURED SEDIMENT TRANSPORT RATE (m /day)
o
|

50,000

o

LST rate(m 3/month)

-50,000

-100,000

J FM A M J J A S ON D
months

000 Kumar et al., (2003) Coast Engg.; Sajiv et al. (2014) IJSR;
000 2000 100 6 1000 2000 3000 Kumar and Shanas (2014) Geomorphology; Kumar et al. (2017) J Coast Cons.

CALCULATED SEDIMENT TRANSPORT RATE (m*/day)
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Shoreline configuration at Chennai (Mani JS, 2001)




Shoreline change due to marine structures

-
P
P

Image © 2020 Maxar Technologies
© 2020 Google
Image © 2020 TerraMetrics Google Earth
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Shoreline change due to marine structure

Obstruction to littoral drift — shoreline change

Ennore Port

Bay of Bengal ) .l Bay of Bengal ! Bay of Bengal

¥ Ennore Creek “% ##$ Ennore Creek

Scale:
1000 0 1000 2000 Meters Legend
. Shoreline - Mar' 1999
* Shoreline Changes Near Ennore Port . . =

: N |O Sour ce:IRS ID PAN (Mar 1999, Dec 2000, Mar* 2003) D"mﬂﬂﬂ AAIIF:H’\V et e| 2( JOZ
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Coastal inundation or coastal flooding is the temporary or permanent

flooding of a portion of land within the coastal zone.
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Coastal inundation along Tamil Nadu coast during tropical cyclone Thane.

Field data is from ICMAM Chennai

Bhaskaran et al., 2014, Coastal Engg.
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Tide are the periodical rise and fall of the sea levels, once or twice a day, caused
by the combined effects of the gravitational forces exerted by the sun, the moon
and the rotation of the earth.

They are a vertical movement of waters and are different from movements of
ocean water caused by meteorological effects like the winds and atmospheric
pressure changes.

Water movements which are caused by the meteorological effects are called
as surges and they are not regular like tides.

Moon'’s gravitational pull to a great extent is the major cause of occurrence of
tides (moon’s gravitational attraction is more effective on earth than that of sun).

~ — Measured water level —— Tide
€100 — ]
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JUNE 2010



Diurnal Tides: Only one high tide and one
low tide each day.

Semi-diurnal Tide: They are the most
common tidal pattern, featuring two high
tides and two low tides each day.

Mixed Tide: Tides having variations in
heights are known as mixed tides.

TIDAL DAY

(Time period between two equal high tides)
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Tides

Harmonic tidal analysis

h(t)=hy+ Y A, cos(w,t—D )+h (1)
n=l1

h(f) = instantaneous water level at time t,

h, = mean water level over observation period,
A = amplitude of n™ constituent,

o = frequency of n™ constituent.

@, = Greenwich phase lag of n constituent,

h.(t) = residual height from non-tidal forces at time t.

Semidiurnal Period (hr)
Principal lunar M, 12.42
Principal solar S, 12.00
Lunar elliptic N, 12.66
Lunisolar K, 11.97

Diurnal Period (hr)
Lunisolar q 23.93
Principal lunar 0, 25.82
Principal solar P, 24.07
Elliptic lunar Q, 26.87

Long Period
Fortnightly M.
Monthly M.
Semiannual S




Mean high water springs
Mean high water neaps

Mean sea level
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Beach processes i SPM, 1984
For undeveloped areas - R R
natural and cyclic process

For developed areas -
disaster for local residents _ﬁﬁ/;ﬁ

Typically most beaches have their
land limit constrained by presence

of coastal infrastructure i
CRZ notification — restrict A
developments in the CRZ area A

MHW

~————{ O
- ———— _WATER LINE

oMW

avale
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Beach profile data

Distance

(m)

Back Sight

Intermediat
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Predicted tide for Visakhapatnam

Low Tide

High Tide

Low Tide

High Tide

2:55 AM(Mon 20
February)

8:49 AM(Mon 20
February)

2:55 PM(Mon 20
February)

9:12 PM(Mon 20
February)

-0.06 m

1.19m

-0.15m

1.48 m
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0 40 80
Distance Seaward (m)

Beach profile at Honnavar BM3

Coastal erosion/accretion can be quantified through beach

profiles covering different seasons and years
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Sin(0) = Opposite / Hypotenuse  Trapizoid area, A = ((P1+P2)/2)*B

Beach slope Beach volume per unit lenght = Area
______ —— - - - - - — =
g} Adjecent ! e H B I
) — P=PIl-P2
Z Pl k .
>
®) P2
B
Base line
Change in beach volume ﬁ
i \‘\! Profile - 1 .§ i - D i Profile - 1
=1 ~
3 O / . 53 *‘.\_L\ No
- Missing area ] P e unn. S
o JProfile N g j:: 2 I Profile -2 \JHAmigsing area
1 2 Beach width Yol s[1 = T,
‘_-' ‘-' '-‘ ‘-' ‘-' ‘-‘ ‘-‘ ..-" & AN
0 +—7F— =10 1 I
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Change in beach volume in Change in beach volume in
maximum common beach width maximum common beach elevation
of two profiles of two profiles

Pictorial description of beach slope and volume from cross-shore beach profiles
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Beach face siope versus median sand grain diameter for high and low wave
energy exposure, (Modified from Wiegel, 1964.)




Wave height, Hs (m)

W
RN

Beach volume (m3)

300 —

200 —

100 —

MAMII ASONDIFMAMIJIJIASONDJJ FMAMJIJIASONDJIFM
2008 2009 2010 2011

High erosion

«  for slight increase in wave height (3.7-4.3 m)
« 2009 Hs 3.5 m persisted for 33 h

«  Other years Hs > 3.5 m not persisted for >5 h
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Beach profile change at BM1,BM2 & BM3 at Ganpatipule beach
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Months from May 2013 to May 2015

May 2013 to May 2015

Ganpaﬂpule
BM Y 500
BM3*

1A
Lowest beach width and volume is
observed during September 2014,

July 2013 and July 2014 at BM1,
BM2 and BM3.

Peak volumes and widths are
recorded in January 2014 at BM1
and in May 2014 at BM2 and in
October at BM3.

During May 2013-May 2015, beach
experienced net accretion through
cycles of erosion/accretion
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Beach sediment grain size classification

Very coarse soils Boulder > 300 mm
size
Cobble size 80-300 mm
Coarse soils Gravel size Coarse 20-80 mm
(G) Fine 4.75 - 20 mm
Sand size Coarse 2-4.75mm
(S) Medium 0.425-2 mm
Fine 0.075-0.425 mm
Fine soils Silt size (M) 0.002 - 0.075 mm
Clay size <0.002 mm
(C)

Grain size is also expressed in ¢ scale and the conversion from mm to ¢ scale is as

per equation given below

¢=-log, D

where D is the size of the particle in mm



Quantification of coastal erosion/shoreline
changes and identification of causes

*  Monitor the process responsible for shoreline changes (waves, currents,
tides, shoreline variations; profile changes; sediment characteristics) and
nearshore bathymetry.

«  Study of long-term and short-term trends in shoreline changes from
multidated imageries and maps.

*  Numerical modelling:
 Nearshore wave and hydrodynamics
 Longshore current and sediment transport
«  Shoreline changes

—i- N |O
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