Satellite Data Processing

H Shiva Kumar hs.kumar-p@incois.gov.in

ITCOOcean Training Program

on

"Remote Sensing and GIS for Earth Observation and Applications"
Organized by

International Training Center for Operational Oceanography (ITCOO)
INCOIS, Hyderabad, India
April 10 – 14, 2023

Outline

- Satellite image downloading
- Raster data opening in QGIS
- Data conversion DN to Reflectance
- Raster Band Composition
- Change the band combination
- Adding data to the band set
- Data Clipping
- NDVI
- Create the training input file
- Training sample extraction
- Image classification
 - a) Unsupervised Image Classification
 - b) Supervised Image Classification

Satellite image Download (Landsat data)

➤ Go to http://earthexplorer.usgs.gov/ and create new user account —— Login

Landsat 9 OLI bands

Band	Wavelength	Spatial Resolution	Useful for mapping	
Band 1 - coastal aerosol	0.43-0.45	30	Coastal and aerosol studies	
Band 2 - blue	0.45-0.51	30	Bathymetric mapping, distinguishing soil from vegetation and deciduous from coniferous vegetation	
Band 3 - green	0.53-0.59	30	Emphasizes peak vegetation, which is useful for assessing plant vigor	
Band 4 - red	0.64-0.67	30	Discriminates vegetation slopes	
Band 5 - Near Infrared (NIR)	0.85-0.88	30	Emphasizes biomass content and shorelines	
Band 6 - Short-wave Infrared (SWIR) 1	1.57-1.65	30	Discriminates moisture content of soil and vegetation; penetrates thin clouds	
Band 7 - Short-wave Infrared (SWIR) 2	2.11-2.29	30	Improved moisture content of soil and vegetation; penetrates thin clouds	
Band 8 - Panchromatic	0.50-0.68	15	Sharper image definition	
Band 9 - Cirrus	1.36-1.38	30	Improved detection of cirrus cloud contamination	
Band 10 - TIRS 1	10.60-11.19	100	Thermal mapping and estimated soil moisture	
Band 11 - TIRS 2	11.50-12.51	100	Improved thermal mapping and estimated soil moisture	

Loading Google earth to QGIS:

Raster data downloading in QGIS:

- ➤ Now open Semi Automatic Classification Download Products
- ➤ Click on login data enter login ID and Password (Need login in https://ers.cr.usgs.gov/login/)
- ➤ Click on search clock on + symbol now go to QGIS window left click for UL, right click for UR
- ➤ Now coordinates will appear in UL and UR ———— Products select L8 OLI/TRS ————Select Date
- ➤ Click on find image list will come select image —— Click on run give path to save data

Raster data opening in QGIS:

Raster Band Composition:

Contin.....

Change the band combination

➤ Select the FCC image — right click — properties

Adding data to band set:

➤Go to SCP click on band set —— SCP plugin window opens.

Contin.....

➤ More band set creation

After band creation if you want to remove any band from band set

Image Clipping

DN to Reflectance Conversion

Conversion to TOA Reflectance

Reflective band DN's can be converted to TOA reflectance using the rescaling coefficients in the MTL file: $\rho\lambda'=M\rho Qcal+A\rho$ where:

 $\rho\lambda' = TOA$ planetary reflectance, without correction for solar angle. Note that $\rho\lambda'$ does not contain a correction for the sun angle.

Mρ=Band-specific multiplicative rescaling factor from the metadata (REFLECTANCE_MULT_BAND_x, where x is the band number)

 $A\rho$ =Band-specific additive rescaling factor from the metadata (REFLECTANCE_ADD_BAND_x, where x is the band number)

Qcal = Quantized and calibrated standard product pixel values (DN)

https://yceo.yale.edu/how-convert-landsat-dns-top-atmosphere-toa-reflectance https://www.usgs.gov/landsat-missions/using-usgs-landsat-level-1-data-product

Contin.....

Go to SCP → create band set Go to SCP → Bandcalc → write formula → run → output folder name.

NDVI calculation

Go to SCP \rightarrow Bandcalc \rightarrow write formula \rightarrow run \rightarrow output folder name.

Change Symbology and number of classes

Go to Layer → select the layer and right-click → Layer properties → Symbology Rendering type: Singleband Pseudocolour → Colour ramp: select colour → mode: Queantile → Classes: ex:5 → Apply → ok

Unsupervised image cassification

- Open Raster Image in QGIS
- \rightarrow Go to raster \rightarrow Miscellaneous \rightarrow Build Virtual Rater \rightarrow select bands \rightarrow run
- \triangleright Go to SCP \rightarrow Band set \rightarrow Select Multi band image \rightarrow select our image \rightarrow select band click on + to make Bandset.
- ➤ Go to Band processing → Clustering → select input band set: select out band set → Method: K-mean →
- Number of classes: as our requirement ex: $5 \rightarrow$ check use values as No data: $0 \rightarrow$ run \rightarrow give output path and file name.
- ➤ Using MapSwipe Tool (plugin) swipe the classified image check with the original data(Go to plugin → MapSwipe tool.

Create the training input file

Go to SCP Dock — Training input — Create SCP training input

Training sample extraction

Now go to the create ROI polygon and draw a polygon

- Now click on save temporary ROI to training input
- ➤ Collect all training classes
- ➤ Based on class you have to changing MC Id and C ID

Example of Macroclasses

Macroclass name	Macroclass ID	Class name	Class ID
Vegetation	1	Grass	1
Vegetation	1	Trees	2
Built-up	2	Buildings	3
Built-up	2	Roads	4

Image classification

- ➤Go to SCP → Band Processing → Classification
- ➤ Use Micro ID or class ID
- ➤ Select algorithm → Landcover signature classification
- ➤ Click on run → give the path to save the classified image.

