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The local and global climate 
forcings induced inhomogeneity  
of Indian rainfall
P. J. Nair1, A. Chakraborty1, H. Varikoden  2, P. A. Francis3 & J. Kuttippurath1

India is home for more than a billion people and its economy is largely based on agrarian society. 
Therefore, rainfall received not only decides its livelihood, but also influences its water security and 
economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds 
of studies would also help forecasters to better tune their models for accurate weather prediction. 
Here, we introduce a new method for estimating variability and trends in rainfall over different climate 
regions of India. The method based on multiple linear regression helps to assess contributions of 
different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show 
that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific 
El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures 
of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by 
the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal 
significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979–2017 period. 
This study cautions against the significant changes in Indian rainfall in a perspective of global climate 
change.

Climate change has a great impact on rainfall patterns in regional and global scale. The impact of climate change 
on rainfall can be studied from its long-term evolution. In India, annual rainfall is largely accounted from the 
southwest monsoon rainfall (also termed as Indian summer monsoon rainfall – ISMR) and northeast monsoon 
rainfall (NEMR). The ISMR is characterized by the flow of winds from the southwest to the land that brings 
moisture from the Indian Ocean to the Indian subcontinent during the summer months of June, July, August 
and September. The rainfall in these months is very important for cultivation. The NEMR is driven by the winds 
blown from the Indian subcontinent to the Indian Ocean in the northeast direction during the winter months of 
October, November and December. Indian rainfall is a highly variable, complex system that depends on several 
atmospheric and oceanic processes. A very few climate forcings are known to describe its large spatio-temporal 
variability to date. The important teleconnection patterns known to influence the variability of Indian rainfall 
are sea surface temperature (SST) variations in the eastern-to-central equatorial Pacific, termed as canonical 
El Niño Southern Oscillation [ENSO] or eastern Pacific (EP) ENSO1, North Atlantic SST variability or Atlantic 
Multidecadal Oscillation (AMO)2,3, and southern equatorial SST variability or the Indian Ocean Dipole (IOD)4. 
The equatorial Indian Ocean Oscillation (EQUINOO), the atmospheric counterpart of IOD mode5, also plays a 
key role in modulating the ISMR6. Recently, other climate modes such as dateline ENSO or central Pacific (CP) 
ENSO7, Atlantic Zonal Mode (AZM)8,9 and Extratropical SST (ESST)10 in connection with the SST variations in 
the CP, Atlantic and extratropical Oceans are also explored in relation to the ISMR. Extreme weather and climate 
events can be explained using some of these proxies and hence, are used for forecasting rainfall. Although weather 
forecast is efficiently carried out in India, its accuracy is limited due to lack of adequate information on climate 
processes that could precisely describe the variability and inhomogeneity of Indian rainfall11. Therefore, accurate 
knowledge on these climate processes is necessary for a better analysis and prediction of rainfall in the region 
concerned. The previous studies have already shown correlation between ISMR and climate processes such as 
ENSO, IOD or EQUINOO. However, simultaneous contribution of various climate processes (either local or 
global) is not assessed yet, and hence, this study examines the contributions of such climate drivers on Indian 
rainfall across the seasons.
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Several studies have been performed out on the long-term trends in Indian rainfall, and these studies find 
it difficult to treat India as a single grid for interpreting trends in regional rainfall, as the long-term trends have 
large seasonal and regional differences. For instance12, found significant negative trends in ISMR in Jharkhand, 
Chattisgarh and Kerala, and significant positive trends in other subdivisions for the 1901–2003 period. Similarly, 
a study over Kerala by Krishnakumar et al.13 showed insignificant positive trends during the winter and summer 
seasons, whereas significant negative trends in June–July months during the 1871–2005 period. Most of these 
analyses used Mann-Kendall statistics or Sen’s slope estimator for computing temporal evolution of rainfall. Also, 
the methods that use linear regression do not account for the dynamical contributions or a time-variant parame-
ter. Therefore, we introduce a new method, multiple linear regression (MLR), to account for the aforementioned 
climate forcings in analysing variability and estimating trends of Indian rainfall across the seasons as this method 
was never applied for these kinds of studies although it was used for predicting ISMR14–17.

Therefore, objective of this study is to (i) introduce the MLR approach to assess variability and estimate trends 
in Indian rainfall using various measurements for all seasons, (ii) examine simultaneous role of local and global 
climate processes on the interannual and seasonal variability of Indian rainfall and (iii) to explain changes in 
rainfall in connection with different climate forcings. The climate indices concerned are Multivariate ENSO Index 
(MEI), El Niño Modoki Index (EMI), AMO Index, Dipole Mode Index (DMI), Equatorial zonal Wind Index 
(EQWIN), AZM index, ESST index, and SST indices for the Arabian Sea (SSTA) and Bay of Bengal (SSTB) corre-
sponding to the climate modes of EP ENSO, CP ENSO, AMO, IOD, EQUINOO, Atlantic Niño, and SST changes 
in the extratropial oceans, Arabian Sea and Bay of Bengal, respectively. Both MEI and EMI are used in the regres-
sion as their generation mechanisms and impact on Indian rainfall are different. Similarly, DMI and EQWIN 
are different sides of IOD mode, and are not significantly correlated and hence both are used. The latitude and 
longitude ranges considered for these climate processes are mentioned in’Methods’ and are displayed in Fig. 1.

The gridded rainfall data available from the India Meteorological Department (hereafter IMD data)18, and 
Global Precipitation Climatology Project (GPCP)19, Climate Prediction Center (CPC) Merged Analysis of 
Precipitation (CMAP)20 and Tropical Rainfall Measuring Mission (TRMM) instruments are used for the anal-
ysis. The average of GPCP and CMAP data is also considered for comparisons, as both data have similar spatial 
resolution and input measurements. The time periods are chosen in accordance with the availability of data in 
the public repository. The data sets with different spatial grids allow to diagnose the influence of resolution and 
period on estimated trends. The study regions are divided in accordance with the climate classifications of IMD, 
and are termed as Peninsular (PI), West Central (WC), North West (NW), North Central (NC) and North East 
(NE), as demonstrated in Fig. 2.

Results and Discussion
Changes in the rainfall. Figure 3 shows the climatology of monthly averaged rainfall rate from various 
sources such as IMD data at 1° and 0.25° resolutions, TRMM, GPCP, CMAP, and the average of GPCP and CMAP 
over the respective periods for different climate regions of India. It is to be noted that all data sets provide sim-
ilar results in all regions, except in the North East, where lower rainfall rates are estimated from the IMD data 
compared to the satellite and rain gauge measurements. The peak rainfall occurs in the ISMR months, in which 
maximum is in the North East, about 15 mm/day, and minimum in the North West, about 8 mm/day. However, 
during the NEMR months, peak rainfall occurs in the Peninsular region, about 6 mm/day, and smallest in the 
North West, about 1 mm/day. On the other hand, the pre-monsoon rainfall is highest in the North East, about 
6 mm/day. The rainfall is very less during the winter season in all regions.

Seasonal variability: role of local and global climate forcings. Figure 4 illustrates the variability of 
proxies (regression coefficient × standard deviation of proxies) contributing to the rainfall for various seasons in 
different regions, where high values indicate dominating contribution from the respective climate indices. Our 
analysis reveals that:

(i) the interannual variability of ISMR is mainly driven by the remote forcings such as MEI and EQWIN and 
the local forcing SSTA in all regions. In addition to these parameters, EMI and AZM also influence the ISMR in 

Figure 1. Schematic of the world map with regions considered for the climate modes are displayed in different 
colours as shown by the legend. The figure is created using Matlab R2016a (https://www.mathworks.com/
products/new_products/release2016a.html).

https://www.mathworks.com/products/new_products/release2016a.html
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the West Central, and SSTB, and AZM affect ISMR in the North West India. In the North East India, ISMR is also 
controlled by EMI, AMO, SSTB and AZM. (ii) The NEMR variability is mostly controlled by the remote signals of 
AMO and ESST in most regions. In the Peninsular region, NEMR is also affected by EMI and AZM. In the North 
East, NEMR is influenced by MEI, EMI, AMO, SSTB and AZM. (iii) The pre-monsoon variability is mostly driven 
by SSTB in the Peninsular region and by EMI, AMO, and SSTA in the North East. In other regions, rainfall in this 
season is mainly affected by MEI and AZM index. (iv) The changes in winter rainfall are governed by EQWIN 
or DMI, and AZM index in the Peninsular India and by the local forcings SSTA and SSTB in the North Central 
and North East. (v) The effect of local forcings such as the SSTs of Arabian Sea and Bay of Bengal is present in all 
seasons, but vary with regions. (vi) The AZM influences ISMR while AMO influences NEMR. (vii) The impact of 

Figure 2. Schematic of Indian climate regions as classified by India Meteorological Department (IMD). These 
climate regions are considered for analysing rainfall variability and trends. The figure is created using Matlab 
R2016a (https://www.mathworks.com/products/new_products/release2016a.html) and modified using GNU 
Image Manipulation Program (GIMP) editor version 2.8.10. (http://www.gnu.org/licenses/).

Figure 3. The climatology of monthly averaged rainfall rate (mm/day) over different climate regions of India 
as observed by rain gauges (IMD Data) and satellite instrument (TRMM), and from the merged rain gauge and 
satellite data sets (GPCP and CMAP) for the periods mentioned in the figure. Average of GPCP and CMAP data 
sets for the 1979–2017 period is also shown.

https://www.mathworks.com/products/new_products/release2016a.html
http://www.gnu.org/licenses/
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DMI is very less in all seasons while that of EQWIN is strong during ISMR. (viii) The nature of the contribution 
of climate modes is opposite in the North East as compared to other regions. These results show how the local and 
remote forcings contribute to the spatial and temporal inhomogeneity of Indian rainfall, and key drivers of the 
variability in each region and season.

Drivers of rainfall variability estimated using the MLR method. The contributions of different cli-
mate processes to the rainfall in different regions as analysed from the average data (average of GPCP and CMAP) 
for the period 1979–2017 are shown in Figs 5 and 6 for the ISMR and NEMR months, respectively. The top 
panels represent rainfall anomalies computed (rainfall-climatology) from the observations (thick solid line) and 
regressed data (thin solid line). The bottom panels (second to ninth) show contributions of climate modes (as 
noted in the figures) to the rainfall changes. The contributions of the climate forcings to the rainfall from the IMD 
data at 0.25° × 0.25° latitude × longitude horizontal grids are also analysed for ISMR and NEMR and are shown 
in the Supplementary Figs S1 and S2, respectively.

ISMR. The regressed data clearly replicate the observed rainfall in all regions. The contributions of proxies show 
large interannual and regional changes. For instance, (i) EP and CP ENSO, EQUINOO and SST of Arabian Sea 
and Bay of Bengal largely affect the ISMR, about ±0.5 mm/day, in all regions as observed from the respective 
indices of MEI, EMI, EQWIN, SSTA and SSTB. (ii) The response of EP ENSO is large compared to that of CP 
ENSO in all regions and the impact of ESST is small compared to other modes. (iii) The ocean component of IOD 
(DMI) is poorly correlated to the ISMR compared to its atmospheric counterpart (EQWIN). (iv) The peak rainfall 
in the North East occurs always opposite to that in other regions and all forcings contribute significantly to the 
rainfall there. In general, during ISMR, winds from the Indian Ocean have two arms when they reach Indian land 
mass, in which one arm passes through the Arabian Sea to the Western Ghats and the second arm crosses the 
Bay of Bengal and reaches the Himalayas through a part of North East region. Therefore, the influence of SST of 
Bay of Bengal is mostly restricted to the Peninsular and North East regions in this season, as demonstrated in the 
analyses (Fig. 5).

In general, El Niño suppresses and La Niña enhances rainfall and the warm phase of AMO induces rainfall21 in 
India. Similarly, positive IOD phase leads to more rainfall while negative IOD phase leads to less rainfall. Several 
studies on ISMR22,23 state that 1979, 1982, 1985, 1986, 1987, 2002, 2004 and 2009 were drought years and 1983, 
1988, 1994 and 2007 were excess rainfall years in India. (v) Among these, 1982, 1987 and 2009 droughts were 
followed by the positive phase of EP ENSO, and the heavy rainfall in 1988 was due to the occurrence of EP La 
Niña. (vi) Our anlysis shows that heavy rainfall in 1983 is contributed by the CP La Niña in all regions, but also by 
AZM in the western regions. (vii) The normal rainfall received in 1997 could be attributed to the positive phase 
of EQUINOO, although it was a strong El Niño year. (viii) While the extremes in the interannual variation of 
the ISMR (excess/drought seasons) are explained rather well by ENSO individually or jointly with other climate 
processes, the spatial variation in the rainfall during these extremes and its links to the climate modes as well as 
other forcings, such as SST of nearby oceans, were not explored yet, as mentioned previously. The positive IOD 
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Figure 4. Contribution of different local and remote climate forcings on Indian rainfall in different seasons 
over 1979–2017 in the Peninsular (PI), West Central (WC), North West (NW), North Central (NC), and North 
East (NE) India and for winter (January-February), pre-monsoon season (March-April-May), ISMR (June-
July-August-September) and NEMR (October-November-December). The North West region takes October-
November as the NEMR months and December-January-February as the winter months.
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year 1994 received heavy rainfall (maximum in the West Central region) and is contributed by AZM. (ix) The year 
2002 was dry and is captured in part by the EQUINOO and SSTA forcings in the Peninsular region. In the North 
West India, the 2002 drought was fully explained by the regressed data through EQUINOO, AZM and SSTA 
forcings. However, local influences from the Arabian Sea and Bay of Bengal initiate rainfall in the North East and 
is captured by the regressed data in 2002. (x) The warm phase of IOD in 2007 produced an exceptional rainfall all 
over India, including North East, as demonstrated by the contributions of EQUINOO in all regions. These suggest 
that the anomalous and regional differences in rainfall can better be interpreted with multiple climate proxies, and 
the local forcings play a vital role in regional rainfall differences or spatial inhomogeneity.

NEMR. Figure 6 depicts the response of various climate processes to the NEMR. (i) The largest amount of rain-
fall is received in the Peninsular region and then in the North East region. Therefore, contributions of forcings 
are also large in the Peninsular India. The North West region receives less amount of rainfall compared to other 
regions during this season. (ii) The climate modes such as CP ENSO, AMO, and ESST well contribute to the 
NEMR while contributions of EP ENSO, IOD, and EQUINOO are very small in all regions. (ii) The AZM, SSTA 
and SSTB contributions are limited to the Peninsular and North East India, with about ±0.5 mm/day. (iv) The 
contributions of proxies and their region-wise impacts are different for the ISMR and NEMR. In comparison to 
the ISMR, CP ENSO shows large influence (±1 mm/day) in the Peninsular India, but the IOD and EQUINOO 
do not affect NEMR in any region. (iv) The AMO and ESST contribute significantly (±0.5 to ±1 mm/day) to 
the rainfall in all regions for which its influence is strongest in the Peninsular region. The rainfall received in the 
Peninsular and West Central regions in 1997 was largely contributed by AMO.

Pre-monsoon and winter seasons. The rainfall is very limited and sporadic in the pre-monsoon and winter sea-
sons. The analysis was carried out for these too (see Supplementary Figs S3 and S4). The peak rainfall occurs in 
the Peninsular and North East India and the regressed data capture most features very well during these seasons. 
In the pre-monsoon season, contributions of CP ENSO, AMO, AZM, and SSTA are large in the North East in 
agreement with the heavy rainfall there, but SSTB contributes to much of the variability in the Peninsular region. 
In winter, rainfall is very small and is mainly dominated by AZM and the local forcing SSTA in most regions. The 
largest rainfall occurs in the Peninsular India compared to other regions and is also contributed by EQWIN and 
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Figure 5. Top panel: The rainfall anomaly computed (thick solid line) for the ISMR (June-July-August-
September) from the average of GPCP and CMAP data sets, and the regressed data (thin solid line). Bottom 
panels (second to ninth from the top): contributions of different climate proxies to the rainfall in each year in 
the Peninsular (PI), West Central (WC), North West (NW), North Central (NC), and North East (NE) India for 
the period 1979–2017.
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SSTA. In brief, the local forcings dominate the irregular and small amount of rainfall during the pre-monsoon 
and winter seasons.

Trends in Indian rainfall. MLR method. The long-term trends in rainfall are calculated using the MLR 
method and results with twice the standard deviation (95% confidence level) are shown in Table 1. In general, all 
data sets show similar trends during the 1979–2017 period in all seasons, indicating the consistency of measure-
ments from different instruments. The trends are also estimated from the average of GPCP and CMAP data for 
the period 1998–2017 to compare with those from TRMM and the results are very similar. The trends are largest 
(in absolute value) for the ISMR and smallest for winter. Although most estimates are not statistically significant 
at the 95% confidence level, the NEMR trends estimated from the TRMM data show a significant negative trend 
(−1.10 ± 1.00 mm/day/dec) in the Peninsular region. All other data sets show significant positive trends (0.43 ± 
0.30 mm/day/dec) for the ISMR in the North West India. The GPCP data show a significant positive trend (0.26 
± 0.25 mm/day/dec) for the pre-monsoon season in the North East India.

The trend analysis with all four data sets in 1979–2017 shows that the ISMR is decreasing and NEMR is 
increasing in the Peninsular, North Central and North East regions, whereas opposite trends are observed in the 
West Central and North West India. The pre-monsoon rainfall is increasing in the Peninsular, West Central and 
North East India and decreasing in other regions while the winter rainfall is decreasing in all regions. None of 
these trends mentioned are significant at 95% confidence level.

The results are consistent with the analyses of Kumar et al.24, who also showed an insignificant negative trend 
in the ISMR (−0.43 mm/yr), positive trends in the NEMR (0.11 mm/yr) and pre-monsoon season (0.04 mm/yr) 
over different regions of India in the 1871–2005 period. They also showed insignificant negative trends in rainfall 
(−0.01 mm/yr) in the North East and North West India and positive trends (0.01 to 0.05 mm/yr) in other regions 
during winter. Similarly, Das et al.25 found insignificant negative trend (−0.62 mm/yr) in the ISMR over North 
East in 1961–2010, as estimated in our study for the 1979–2017 period. However, they estimated significant 
positive trends for other seasons. Our study also shows significant positive trends for pre-monsoon season, but 
insignificant positive trends for NEMR. The slight differences in the computed trends among different studies can 
be due to the differences in the periods of estimates.
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Figure 6. Top panel: The rainfall anomaly computed (thick solid line) for the NEMR (October-November-
December) from the average of GPCP and CMAP data sets, and the regressed data (thin solid line). Bottom 
panels (second to ninth from the top): contributions of different climate proxies to the rainfall in each year in 
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the period 1979–2017. The North West region takes October-November as the NEMR months.
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Simple linear regression method. The trends are also estimated using the simple linear regression method (with-
out including the climate modes in the model) and are shown in Table 2. It shows that ISMR is decreasing in the 
Peninsular, North Central and North East regions but increasing in all other regions, same as that obtained from 
the MLR method. However, statistically significant positive trends are estimated for North West (0.82 mm/day/
dec) during the 1998–2017 period and North East (0.53 mm/day/dec) during the 1979–2017 period. On the other 
hand, NEMR is increasing in the Peninsular and North East India while decreasing in other regions, although 
these are not statistically significant. A similar result is estimated from the MLR method except for the North 
Central India. The pre-monsoon rainfall shows a statistically significant positive trend (0.18 mm/day/dec) in the 
Peninsular, significant negative trend (−0.69 mm/day/dec) in the North East and insignificant negative trends in 
the West Central, North West and North Central regions in 1979–2017. The winter rainfall shows insignificant 
negative trends in all regions while a significant negative trend (−0.24 mm/day/dec) is estimated in the Peninsular 
region during the 1998–2017 period.

Dataset Year Winter Pre-monsoon ISMR NEMR

Peninsular India

IMD (1° × 1°) 1979–2012 −0.06 ± 0.16 0.13 ± 0.24 0.34 ± 0.64 0.32 ± 0.42

IMD (0.25° × 0.25°) 1979–2017 0.01 ± 0.15 0.16 ± 0.21 0.19 ± 0.32 0.16 ± 0.28

GPCP (2.5° × 2.5°) 1979–2017 −0.03 ± 0.15 0.19 ± 0.18 −0.10 ± 0.25 0.00 ± 0.29

CMAP (2.5° × 2.5°) 1979–2017 −0.08 ± 0.16 0.16 ± 0.20 −0.07 ± 0.30 0.06 ± 0.32

Average (2.5° × 2.5°) 1979–2017 −0.05 ± 0.15 0.18 ± 0.19 −0.08 ± 0.26 0.03 ± 0.30

Average (2.5° × 2.5°) 1998–2017 −0.21 ± 0.28 0.07 ± 0.48 −0.01 ± 0.97 −0.77 ± 0.86

TRMM (0.25° × 0.25°) 1998–2017 −0.20 ± 0.29 0.16 ± 0.50 0.23 ± 1.08 −1.10 ± 1.00

West Central India

IMD (1° × 1°) 1979–2012 −0.10 ± 0.12 0.00 ± 0.07 −0.11 ± 0.43 0.02 ± 0.18

IMD (0.25° × 0.25°) 1979–2017 −0.00 ± 0.13 0.03 ± 0.06 −0.02 ± 0.38 −0.06 ± 0.14

GPCP (2.5° × 2.5°) 1979–2017 −0.04 ± 0.10 0.05 ± 0.08 0.07 ± 0.34 −0.03 ± 0.14

CMAP (2.5° × 2.5°) 1979–2017 −0.04 ± 0.11 0.02 ± 0.07 0.06 ± 0.31 −0.05 ± 0.15

Average (2.5° × 2.5°) 1979–2017 −0.04 ± 0.11 0.03 ± 0.07 0.07 ± 0.31 −0.04 ± 0.15

Average (2.5° × 2.5°) 1998–2017 −0.04 ± 0.34 0.12 ± 0.29 0.20 ± 0.73 −0.16 ± 0.33

TRMM (0.25° × 0.25°) 1998–2017 −0.02 ± 0.41 0.10 ± 0.29 0.12 ± 0.88 −0.20 ± 0.36

North West India

IMD (1° × 1°) 1979–2012 −0.03 ± 0.07 −0.06 ± 0.07 0.35 ± 0.40 −0.11 ± 0.18

IMD (0.25° × 0.25°) 1979–2017 −0.01 ± 0.06 −0.02 ± 0.08 0.33 ± 0.34 −0.09 ± 0.12

GPCP (2.5° × 2.5°) 1979–2017 0.00 ± 0.07 −0.00 ± 0.08 0.43 ± 0.30 −0.06 ± 0.11

CMAP (2.5° × 2.5°) 1979–2017 −0.02 ± 0.06 −0.07 ± 0.11 0.36 ± 0.29 −0.09 ± 0.14

Average (2.5° × 2.5°) 1979–2017 −0.01 ± 0.06 −0.04 ± 0.10 0.40 ± 0.29 −0.07 ± 0.12

Average (2.5° × 2.5°) 1998–2017 0.00 ± 0.25 0.15 ± 0.20 0.80 ± 0.69 −0.01 ± 0.28

TRMM (0.25° × 0.25°) 1998–2017 −0.05 ± 0.29 0.18 ± 0.20 0.83 ± 0.87 −0.06 ± 0.30

North Central India

IMD (1° × 1°) 1979–2012 −0.07 ± 0.15 −0.06 ± 0.11 −0.15 ± 0.39 0.04 ± 0.17

IMD (0.25° × 0.25°) 1979–2017 0.06 ± 0.14 −0.10 ± 0.11 −0.11 ± 0.33 0.03 ± 0.19

GPCP (2.5° × 2.5°) 1979–2017 −0.05 ± 0.13 −0.01 ± 0.11 −0.07 ± 0.32 −0.02 ± 0.16

CMAP (2.5° × 2.5°) 1979–2017 −0.05 ± 0.11 −0.06 ± 0.12 0.06 ± 0.29 0.06 ± 0.20

Average (2.5° × 2.5°) 1979–2017 −0.05 ± 0.12 −0.04 ± 0.11 −0.00 ± 0.29 0.02 ± 0.18

Average (2.5° × 2.5°) 1998–2017 −0.01 ± 0.48 0.07 ± 0.36 −0.19 ± 0.83 −0.13 ± 0.42

TRMM (0.25° × 0.25°) 1998–2017 0.02 ± 0.68 0.10 ± 0.37 0.06 ± 1.12 −0.22 ± 0.33

North East India

IMD (1° × 1°) 1979–2012 −0.13 ± 0.17 −0.51 ± 0.66 −0.59 ± 0.81 0.20 ± 0.52

IMD (0.25° × 0.25°) 1979–2017 −0.07 ± 0.17 −0.11 ± 0.37 −0.28 ± 0.46 0.10 ± 0.26

GPCP (2.5° × 2.5°) 1979–2017 −0.06 ± 0.12 0.26 ± 0.25 −0.01 ± 0.36 0.12 ± 0.29

CMAP (2.5° × 2.5°) 1979–2017 −0.08 ± 0.14 0.12 ± 0.29 0.04 ± 0.55 0.15 ± 0.28

Average (2.5° × 2.5°) 1979–2017 −0.07 ± 0.12 0.19 ± 0.23 0.02 ± 0.39 0.14 ± 0.27

Average (2.5° × 2.5°) 1998–2017 −0.08 ± 0.43 0.46 ± 0.62 0.19 ± 1.02 0.01 ± 0.72

TRMM (0.25° × 0.25°) 1998–2017 −0.11 ± 0.54 0.38 ± 0.81 0.62 ± 1.36 0.19 ± 0.90

Table 1. The trends (mm/day/dec) estimated using the multiple linear regression method from the rainfall 
anomalies computed for the periods 1979–2012, 1979–2017 and 1998–2017, as available from each instrument 
and the average (GPCP and CMAP) data for winter, pre-monsoon season, ISMR and NEMR. Trends are shown 
with 95% confidence level for five different climate regions of India. The statistically significant values are shown 
in bold. The average of GPCP and CMAP data are analysed for both 1979–2017 and 1998–2017 periods and 
these periods are also shown in bold.



www.nature.com/scientificreports/

8SCIENTIfIC REPORTS |  (2018) 8:6026  | DOI:10.1038/s41598-018-24021-x

Conclusions
This study introduces multiple linear regression technique for the evaluation of the contribution of different local 
and remote drivers of climate change and to estimate trends in rainfall over different regions across four seasons 
in India. The importance of this method is that it uses a time-variant parameter for determining trends in rainfall 
and provides quantitative evaluation of trends in rainfall. Also, trends in climate modes are removed before apply-
ing in the regression model and hence, the computed trends would be apparently free from the trends of proxies 
used in the regression model. This study assesses combined relationship between Indian rainfall and different 
local and global climate processes.

Our study finds that (i) changes in the Arabian Sea and Bay of Bengal surface temperatures, equatorial zonal 
winds, Atlantic zonal mode, EP ENSO and CP ENSO control the variability of ISMR in all regions. (ii) The CP 
ENSO and the changes in SST of North Atlantic and extratropical oceans decide the variability of NEMR. (iii) 
The pre-monsoon rainfall variability is controlled by CP ENSO, AMO and SSTA, whereas the winter rainfall 

Dataset Year Winter Pre-monsoon ISMR NEMR

Peninsular India

IMD (1° × 1°) 1979–2012 −0.05 ± 0.14 0.16 ± 0.22 0.47 ± 0.48 0.25 ± 0.36

IMD (0.25° × 0.25°) 1979–2017 0.01 ± 0.10 0.15 ± 0.13 0.01 ± 0.21 0.04 ± 0.23

GPCP (2.5° × 2.5°) 1979–2017 −0.05 ± 0.12 0.18 ± 0.16 −0.21 ± 0.21 0.04 ± 0.27

CMAP (2.5° × 2.5°) 1979–2017 −0.08 ± 0.12 0.14 ± 0.17 −0.18 ± 0.24 0.11 ± 0.29

Average (2.5° × 2.5°) 1979–2017 −0.07 ± 0.12 0.16 ± 0.16 −0.20 ± 0.21 0.07 ± 0.28

Average (2.5° × 2.5°) 1998–2017 −0.24 ± 0.20 −0.04 ± 0.39 −0.06 ± 0.61 −0.44 ± 0.76

TRMM (0.25° × 0.25°) 1998–2017 −0.22 ± 0.22 0.04 ± 0.38 0.11 ± 0.71 −0.71 ± 0.93

West Central India

IMD (1° × 1°) 1979–2012 −0.10 ± 0.09 0.01 ± 0.06 0.04 ± 0.37 −0.06 ± 0.15

IMD (0.25° × 0.25°) 1979–2017 0.07 ± 0.09 −0.01 ± 0.07 0.31 ± 0.30 −0.02 ± 0.13

GPCP (2.5° × 2.5°) 1979–2017 −0.04 ± 0.08 0.06 ± 0.07 0.04 ± 0.28 −0.05 ± 0.12

CMAP (2.5° × 2.5°) 1979–2017 −0.05 ± 0.09 0.03 ± 0.07 0.09 ± 0.27 −0.06 ± 0.12

Average (2.5° × 2.5°) 1979–2017 −0.05 ± 0.08 0.05 ± 0.07 0.06 ± 0.27 −0.05 ± 0.12

Average (2.5° × 2.5°) 1998–2017 0.02 ± 0.21 0.03 ± 0.20 0.23 ± 0.77 −0.07 ± 0.32

TRMM (0.25° × 0.25°) 1998–2017 0.04 ± 0.25 0.04 ± 0.21 0.20 ± 0.91 −0.09 ± 0.34

North West India

IMD (1° × 1°) 1979–2012 −0.01 ± 0.05 −0.04 ± 0.08 0.31 ± 0.36 −0.09 ± 0.12

IMD (0.25° × 0.25°) 1979–2017 0.02 ± 0.04 −0.03 ± 0.05 0.04 ± 0.29 −0.07 ± 0.10

GPCP (2.5° × 2.5°) 1979–2017 0.00 ± 0.05 0.02 ± 0.07 0.27 ± 0.27 −0.06 ± 0.09

CMAP (2.5° × 2.5°) 1979–2017 −0.01 ± 0.04 −0.04 ± 0.09 0.21 ± 0.27 −0.08 ± 0.10

Average (2.5° × 2.5°) 1979–2017 −0.00 ± 0.04 −0.01 ± 0.08 0.24 ± 0.26 −0.07 ± 0.09

Average (2.5° × 2.5°) 1998–2017 0.02 ± 0.14 0.11 ± 0.14 0.76 ± 0.67 −0.12 ± 0.24

TRMM (0.25° × 0.25°) 1998–2017 0.00 ± 0.17 0.14 ± 0.17 0.82 ± 0.81 −0.22 ± 0.28

North Central India

IMD (1° × 1°) 1979–2012 −0.09 ± 0.12 −0.04 ± 0.12 0.05 ± 0.30 −0.06 ± 0.15

IMD (0.25° × 0.25°) 1979–2017 0.05 ± 0.11 −0.03 ± 0.10 0.08 ± 0.30 −0.06 ± 0.15

GPCP (2.5° × 2.5°) 1979–2017 −0.06 ± 0.10 0.03 ± 0.09 −0.08 ± 0.25 −0.04 ± 0.12

CMAP (2.5° × 2.5°) 1979–2017 −0.07 ± 0.09 −0.01 ± 0.10 0.13 ± 0.24 0.00 ± 0.15

Average (2.5° × 2.5°) 1979–2017 −0.06 ± 0.10 0.01 ± 0.09 0.03 ± 0.23 −0.02 ± 0.14

Average (2.5° × 2.5°) 1998–2017 0.04 ± 0.31 0.06 ± 0.21 −0.23 ± 0.63 −0.09 ± 0.40

TRMM (0.25° × 0.25°) 1998–2017 0.11 ± 0.39 0.10 ± 0.24 −0.16 ± 0.88 −0.18 ± 0.33

North East India

IMD (1° × 1°) 1979–2012 −0.17 ± 0.18 −0.69 ± 0.59 −0.51 ± 0.66 −0.02 ± 0.43

IMD (0.25° × 0.25°) 1979–2017 0.01 ± 0.10 0.02 ± 0.23 0.53 ± 0.19 0.07 ± 0.17

GPCP (2.5° × 2.5°) 1979–2017 −0.08 ± 0.08 0.13 ± 0.27 −0.02 ± 0.30 0.02 ± 0.24

CMAP (2.5° × 2.5°) 1979–2017 −0.10 ± 0.11 0.08 ± 0.28 0.37 ± 0.45 0.05 ± 0.24

Average (2.5° × 2.5°) 1979–2017 −0.09 ± 0.09 0.10 ± 0.25 0.17 ± 0.32 0.04 ± 0.23

Average (2.5° × 2.5°) 1998–2017 −0.09 ± 0.25 −0.17 ± 0.66 −0.17 ± 0.84 −0.22 ± 0.60

TRMM (0.25° × 0.25°) 1998–2017 −0.12 ± 0.30 −0.23 ± 0.77 −0.05 ± 1.06 −0.09 ± 0.78

Table 2. The trends (mm/day/dec) estimated using simple linear regression method (without including climate 
modes in the model) from the rainfall anomalies for the periods 1979–2012, 1979–2017 and 1998–2017, as 
available from each instrument and the average (GPCP and CMAP) data for winter, pre−monsoon season, 
ISMR and NEMR. Trends are shown with 95% confidence level for five different climate regions of India. The 
statistically significant values are shown in bold. The average of GPCP and CMAP data are analysed for both 
1979–2017 and 1998–2017 periods and these periods are also shown in bold.
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variability is dominated by EQWIN or DMI, AZM and the local forcings SSTA and SSTB. (iv) The Bay of Bengal 
surface temperature is the major driver of rainfall variability in the North East in all seasons. (v) These results 
unravel the role of a number of climate modes including the local forcings, in addition to the commonly used 
global climate forcings, in determining the variability of rainfall distribution over India. (vi) An insignificant 
negative trend is estimated for ISMR and positive trend for NEMR in the Peninsular, North Central and North 
East regions, and the trends are opposite in other regions. Statistically significant positive trend (0.43 mm/day/
dec) at 95% confidence level is found in the North West India for ISMR, as estimated from the IMD, GPCP and 
CMAP data.

We have introduced a multiple linear regression model for the variability and trend analyses of rainfall, and 
the model with nine detrended and lagged climate parameters fits well with the observed rainfall in all seasons. 
Since similar statistical techniques are used for predicting weather and extreme weather events, the method pre-
sented in this study can be applied to improve the existing prediction models or weather forecasting models of 
Indian monsoon. Henceforth, our study unveils some interesting facts on the variability of Indian rainfall, both 
in terms of contributing factors and long-term trends. The observed changes in rainfall also have signatures of the 
impact of regional and global climate change, and hence, corroborate the importance of continued monitoring 
and long-term analyses of rainfall, as these kinds of studies have great significance in the context of climate impact 
assessments and government level decisions.

Methods
The gridded rainfall data compiled from rain gauges deployed at different places in India by India Meteorological 
Department (IMD) are used. The IMD data are available on 1° × 1° and 0.25° × 0.25° latitude × longitude hori-
zontal resolution for the periods 1979–2012 and 1979–2017, respectively. In addition, the precipitation data are 
taken from the combined rain gauge and satellite observations such as Global Precipitation Climatology Project 
(GPCP) version 2.3 and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP), and are 
available on 2.5° × 2.5° spatial resolution for the period 1979–2017. The average of GPCP and CMAP data is also 
considered for the analysis. The rainfall data from the satellite instrument, Tropical Rainfall Measuring Mission 
(TRMM) version 3B43v7, with a horizontal resolution of 0.25° × 0.25° from 1998 to 2017 are also used.

The major drivers representing different climate processes, which can significantly affect regional and global 
rainfall pattern such as eastern Pacific (EP) El Niño Southern Oscillation (ENSO), central Pacific (CP) ENSO, 
Atlantic Multidecadal Oscillation (AMO), Indian Ocean Dipole (IOD), Equatorial Indian Ocean Oscillation 
(EQUINOO), Atlantic Zonal Mode (AZM), and Extratropical Sea Surface temperature (ESST) are used. The 
Multivariate ENSO Index (MEI) based on six atmospheric and oceanic variables in the Niño 3.4 region (5°N −5°S 
and 170°W − 120°W) is used to characterise the intensity of EP ENSO. The El Niño Modoki Index (EMI) derived 
from the difference in area averaged SST anomalies in the regions of 10°S − 10°N and 165°E − 140°W; 15°S 
− 5°N and 110°W − 70°W; and 10°S − 20°N and 125°E − 145°E using the method provided in7, is considered 
as the CP ENSO index26. The annual average of SST anomalies at 0° − 60°N and 75°W − 7.5°W is taken as the 
AMO index for studying the impact of SST variability in the North Atlantic Ocean on Indian rainfall. The index 
corresponding to the AZM is computed from the area averaged SST anomaly over 3°S − 3°N and 20°W − 0°W. 
The Dipole Mode Index (DMI), the SST gradient between the western equatorial Indian Ocean (10°S − 10°N and 
50°E − 70°E) and the south eastern equatorial Indian Ocean (10°S − 0°N and 90°E − 110°E) is considered as the 
ocean component of IOD. The EQUINOO is the atmospheric counterpart of IOD, and is based on the surface 
zonal wind anomaly over the central equatorial Indian Ocean (2.5°S − 2.5°N and 60°E − 90°E). The negative of 
this wind anomaly, normalized by its standard deviation is used as the index of EQUINOO, termed as Equatorial 
zonal Wind Index (EQWIN)27. However, the positive IOD events are associated with EQUINOO, but is not true 
for negative IODs. In fact, IOD and EQUINOO are loosely coupled. Therefore, the correlation between EQWIN 
and ISMR is better than that between DMI and ISMR28,29 although these two indices represent IOD. The extrat-
ropical SST is considered as the area-averaged SST anomaly of the extratropical oceanic region of 15°N − 75°N 
and 100°E − 5°W.

Apart from these, two new proxies are constructed to study the influences of SSTs of Arabian Sea and Bay of 
Bengal on Indian rainfall. The large SST variability region is determined from the spatial variance computed for 
the JJAS months in 1979–2017, and the regions considered are 10°N − 15°N and 51°E − 60°E for Arabian Sea 
and 6°N − 10°N and 78°E − 82°E for Bay of Bengal. Then, corresponding indices are computed for each month 
(January to December) using area-averaged SST for those regions. The monthly Extended Reconstructed SST 
(ERSST) version 5 data30 are used for making these indices. All these climate modes are detrended, and are nor-
malized to unity to be used in the regression model. The lagged combination of these parameters is used in the 
model and the considered lag is zero month for CP ENSO and one month for other proxies.

The analysis is carried out using monthly mean rainfall anomaly (mm/day) averaged for the winter season 
(January–February), pre-monsoon season (March–April–May), ISMR (June–July–August–September) and 
NEMR (October–November–December), as defined by IMD. The North West region takes October–November 
as the NEMR months and December–January–February as winter. Also, region-wise analysis is performed to 
investigate the spatial inhomogeneity of rainfall in relation to the climate modes.

The MLR model used to fit the rainfall data in terms of explanatory variables is:

ε

= + + + +
+ + +

+ + + +

Y z C A z C z C MEI z C EMI z C AMO z
C AZM z C DMI z C EQWIN z
C ESST z C SSTA z C SSTB z z

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) (1)

A z MEI EMI AMO

AZM DMI EQWIN

ESST SSTA SSTB
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where Y is the rainfall data, z is years, A is a constant level term (taken as value 1), C z is linear trend, CA, CMEI, 
CEMI, CAMO, CAZM, CDMI, CEQWIN, CESST, CSSTA and CSSTB are the regression coefficients of the time series of constant 
term, EP ENSO, CP ENSO, AMO, AZM, DMI, EQWIN, ESST, SSTA, and SSTB, respectively, that determines the 
contribution of each variable given the other variables are held constant and ε is the residual. This model can be 
expressed in vector form as

ε= + �
�� ����
Y CX (2)

where X (z × p) is the proxy data and C (p × 1) holds the regression coefficient of each proxy. p is the number of 
proxy terms including the constant used in the regression model and is eleven in this study. The standard error 
of the regression coefficient is calculated by minimising the model using the generalised least squares method31 
by setting

= −�� �� �� ��
Ĉ X X X Y( ) (3)

T T1

The residual is computed as

ε = −
�� ��

ˆ ˆY CX (4)

The error standard deviation is

∑
σ =

−

−
ˆ

Y z CX z

z p

[ ( ) ( )]

(5)
z

2

The variances of the regression coefficients are the diagonal elements of the standard error matrix

σ σ= −�� ��
ˆ X X( ) (6)p

T2 2 1

The standard deviation of the regression coefficient is dependent on the variance and autocorrelation (φ) of 
the residual. Therefore, autocorrelation is also incorporated in the estimation of standard deviation without which 
a precise trend estimate is not possible and would falsely estimate the 95% confidence level.

σ φ
φ

= σ ×
+
−

ˆ 1
1 (7)

p p

The trend is said to be statistically significant if it is greater than twice its standard deviation (approximately 
95% confidence level) in this study.

There are certain assumptions in using MLR model that (i) the explanatory parameters are not highly corre-
lated each other. (ii) The residuals are normally distributed. (iii) The error term is not auto-correlated as it affects 
the error estimation. Therefore, the presented model is made by verifying all these factors. The multicollinearity 
among the climate indices is checked using the tolerance and variance inflation factor32 and found that model is 
free from multicollinearity among the variables. Also, existence of autocorrelation of residuals is evaluated using 
Durbin-Watson test and is inside the limits as stated in33. Therefore, the considered MLR model satisfies the con-
ditions of goodness of fit of the models.

A study by Krishnaswamy et al.34 reported that there exists nonstationarity and nonlinearity among the cli-
mate processes, especially between ENSO and IOD. This nonlinear relationship among the climate modes can 
also be studied using multiple non-linear regression model as done by Esha and Imteaz35.

References
 1. Trenberth, K. E. & Hoar, T. J. El Niño and climate change. Geophys. Res. Lett. 24(23), 3057–3060 (1997).
 2. Goswami, B. N., Madhusoodanan, M. S., Neema, C. P. & Sengupta, D. A physical mechanism for North Atlantic SST influence on 

the Indian summer monsoon. Geophys. Res. Lett. 33, L02706, https://doi.org/10.1029/2005GL024803 (2006).
 3. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. 

Res. Lett. 33, L17712, https://doi.org/10.1029/2006GL026267 (2006).
 4. Ashok, K., Guan, Z. & Yamagata, T. Impact of the Indian Ocean Dipole on the relationship between the Indian Monsoon Rainfall 

and ENSO. Geophys. Res. Lett. 28(23), 4499–4502, https://doi.org/10.1029/2001GL013294 (2001).
 5. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled oceanic atmospheric dynamics in the Indian Ocean during 

1997–98. Nature. 401, 356–360, https://doi.org/10.1038/43848, (1999).
 6. Francis, P. A. & Gadgil, S. A note on new indices for the equatorial Indian Ocean oscillation. J. of Earth System Science 122(4), 

1005–1011 (2013).
 7. Ashok, K., Behera, S. K., Rao, A. S., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 

Oceans. 112, C11007, https://doi.org/10.1029/2006JC003798 (2007).
 8. Kucharski, F., Bracco, A., Yoo, J. H. & Molteni, F. Atlantic forced component of the Indian monsoon interannual variability. Geophys. 

Res. Lett. 35, L04706, https://doi.org/10.1029/2007GL033037 (2008).
 9. Pottapinjara, V., Girishkumar, M. S., Ravichandran, M. & Murtugudde, R. Inuence of the Atlantic zonal mode on monsoon depressions 

in the Bay of Bengal during boreal summer. J. Geophys. Res. Atmos. 119, 6456–6469, https://doi.org/10.1002/2014JD021494 (2014).
 10. Chattopadhyay, R. et al. Influence of extratropical sea-surface temperature on the Indian summer monsoon: an unexplored source 

of sea-sonal predictability. Q. J. R. Meteorol. Soc. 141, 2760–2775, https://doi.org/10.1002/qj.2562 (2015).
 11. Kashid, S. K. & Maity, R. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation 

patterns using Genetic Programming. J. Hydrology 454–455, 26–41, https://doi.org/10.1016/j.jhydrol.2012.05.033 (2012).
 12. Guhathakurta, P. & Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 28, 1453–1469, https://doi.org/10.1002/

joc.1640 (2008).

http://dx.doi.org/https://doi.org/10.1029/2005GL024803
http://dx.doi.org/10.1029/2006GL026267
http://dx.doi.org/10.1029/2001GL013294
http://dx.doi.org/10.1038/43848,
http://dx.doi.org/10.1029/2006JC003798
http://dx.doi.org/10.1029/2007GL033037
http://dx.doi.org/10.1002/2014JD021494
http://dx.doi.org/https://doi.org/10.1002/qj.2562
http://dx.doi.org/10.1016/j.jhydrol.2012.05.033
http://dx.doi.org/10.1002/joc.1640
http://dx.doi.org/10.1002/joc.1640


www.nature.com/scientificreports/

1 1SCIENTIfIC REPORTS |  (2018) 8:6026  | DOI:10.1038/s41598-018-24021-x

 13. Krishnakumar, K. N., Prasada Rao, G. S. L. H. V. & Gopakumar, C. S. Rainfall trends in twentieth century over Kerala, India. 
Atmospheric Environment. 43(11), 1940–1944, https://doi.org/10.1016/j.atmosenv.2008.12.053 (2008).

 14. Rajeevan, M., Pai, D. S., Anil Kumar, R. & Lal, B. New statistical models for long-range forecasting of southwest monsoon rainfall 
over India. Clim. Dyn. 28, 813–828, https://doi.org/10.1007/s00382-006-0197-6 (2007).

 15. Sadhuram, Y. & Ramana Murthy, T. V. Simple Multiple Regression Model for long range forecasting of Indian Summer Monsoon 
Rainfall. Meteorology and Atmospheric Physics 99(1–2), 17–24, https://doi.org/10.1007/s00703-007-0277-0 (2008).

 16. Selvaraj, R. S. & Aditya, R. Statistical Method of Predicting the Northeast Rainfall of Tamil Nadu. Universal. J. Environ. Res. and 
Tech. 1(4), 557–559 (2011).

 17. Retius, C. & Chikobvu, D. A weighted multiple regression model to predict rainfall patterns: Principal component analysis approach. 
Mediterranean Journal of Social Sciences. 5, 7, https://doi.org/10.5901/mjss.2014.v5n7p34 (2014).

 18. Rajeevan, M., Bhate, J. & Kale, J. D. A High Resolution Daily Gridded Rainfall Data for the Indian Region: Analysis of break and 
active monsoon spells. Curr. Sci. 91, 296–306 (2006).

 19. Adler, R. F. et al. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Pre cipitation Analysis (1979-Present). J. 
Hydrometeor. 4, 1147–1167 (2003).

 20. Xie, P. & Arkin, P. A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and 
numerical model outputs. Bull. Amer. Meteor. Soc. 78, 2539–2558 (1997).

 21. Feifei, L., Li, S. & Furevik, T. The connection between the Atlantic Multi decadal Oscillation and the Indian Summer Monsoon in 
Bergen Climate Model Version 2.0. J. Geophys. Res. 116, D19, https://doi.org/10.1029/2011JD015848 (2011).

 22. Charlotte, B., Dhanya, V. & Mathew, B. EQUINOO: The entity and validity of this oscillation to Indian monsoon. Int. J. of Engineering 
and Science 1(11), 45–54 (2012).

 23. Nanjundiah, R. S., Francis, P. A., Ved, M. & Gadgil, S. Predicting the extremes of Indian summer monsoon rainfall with coupled 
ocean–atmosphere models. Current Science 104(10), 1380–1393 (2013).

 24. Kumar, V., Jain, S. K. & Singh, Y. Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 55(4), 484–496, https://doi.org/10.1080
/02626667.2010.481373 (2010).

 25. Das, S., Tomar, C. S., Saha, D., Shaw, S. O. & Singh, C. Trends in Rainfall Patterns over North-East India during 1961–2010. Int. J. of 
Earth and Atmo spheric Science 2(2), 37–48 (2015).

 26. Garfinkel, C. I., Hurwitz, M. M., Waugh, D. W. & Butler, A. H. Are the teleconnections of central Pacific and eastern Pacific El Nino 
distinct in boreal Wintertime? Clim. Dyn. 41, 1835–1852, https://doi.org/10.1007/s00382-012-1570-2 (2013).

 27. Gadgil, S., Vinayachandran, P. N., Francis, P. A. & Gadgil, S. Extremes of the Indian summer monsoon rainfall, ENSO and equatorial 
Indian Ocean oscillation. Geophys. Res. Lett. 31, L12213, https://doi.org/10.1029/2004GL019733, (2004).

 28. Ihara, C., Kushnir, Y., Cane, M. A. & De La Peña, V. H. Indian summer monsoon rainfall and its link with ENSO and Indian Ocean 
climate indices. Int. J. Climatol. 27, 179–187, https://doi.org/10.1002/joc.1394 (2007).

 29. Surendran, S., Gadgil, S., Francis, P. A. & Rajeevan, M. Prediction of Indian rainfall during the summer monsoon season on the basis 
of links with equatorial Pacific and Indian Ocean climate indices. Environ. Res. Lett. 10, 094004 (2015).

 30. Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [SST]. NOAA National Centers for 
Environmental Information. https://doi.org/10.7289/V5T72FNM [28 January 2018].

 31. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T. (Eds). Numerical Recipes. (Cambridge University Press, Cambridge, 
UK, 1989; 504–508.

 32. Lin, F.-J. Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Qual. Quant. 42, 
417, https://doi.org/10.1007/s11135-006-9055-1 (2008).

 33. Mekanik, F. & Imteaz, M. A. Analysing lagged ENSO and IOD as potential predictors for long-term rainfall forecasting using 
multiple regression modelling. 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December (2013).

 34. Krishnaswamy, J. et al. Nonstationary and nonlinear inuence of ENSO and Indian Ocean Dipole on the variability of Indian 
monsoon rainfall and extreme rain event. Clim. Dyn. 45, 175–184, https://doi.org/10.1007/s00382-014-2288-0 (2014).

 35. Esha, R. I. & Imteaz, M. A. Non-linear multiple regression analysis for predicting seasonal streamflow using large scale climate 
mode. 22nd International Congress on Modelling and Simulation. Hobart, Tasmania, Australia, mssanz.org.au/modsim2017 (2017).

Acknowledgements
This study is funded by a post-doctoral fellowship of Indian Institute of Technology Kharagpur. The authors 
acknowledge the financial support received from the Ministry of Human Resource Development, Department 
of Science and Technology through the CoE in Climate Change NMSKCC/SPLICE, and SRIC of IIT Kharagpur. 
GPCP and CMAP Precipitation data, and the NOAA_ERSST_V4 data provided by the NOAA/OAR/ESRL PSD, 
Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. The TRMM data are taken from 
http://daac.gsfc.nasa.gov/precipitation/TRMM_README/TRMM_3B43_readme.shtml. The ENSO data are 
taken from https://www.esrl.noaa.gov/psd/data/climateindices/list/, AMO data are from http://www.esrl.noaa.
gov/psd/data/timeseries/AMO/, the DMI data are taken from the HadISST version 1.1 available at http://www.
esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/index.html and the EQWIN data are from the Indian National 
Centre for Ocean Information Services. This is INCOIS contribution number 320. The authors thank the Editor 
and anonymous reviewers for their suggestions and comments that helped to improve the content of the article.

Author Contributions
P.J.N. designed the research, performed the analysis and wrote the first draft. P.J.N. had discussions with A.C., 
H.V., P.A.F. and J.K. for further modifications and improvements, and that version of the manuscript was 
submitted.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-24021-x.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1016/j.atmosenv.2008.12.053
http://dx.doi.org/10.1007/s00382-006-0197-6
http://dx.doi.org/10.1007/s00703-007-0277-0
http://dx.doi.org/10.5901/mjss.2014.v5n7p34
http://dx.doi.org/10.1029/2011JD015848
http://dx.doi.org/10.1080/02626667.2010.481373
http://dx.doi.org/10.1080/02626667.2010.481373
http://dx.doi.org/https://doi.org/10.1007/s00382-012-1570-2
http://dx.doi.org/10.1029/2004GL019733,
http://dx.doi.org/10.1002/joc.1394
http://dx.doi.org/https://doi.org/10.7289/V5T72FNM
http://dx.doi.org/10.1007/s11135-006-9055-1
http://dx.doi.org/10.1007/s00382-014-2288-0
http://www.esrl.noaa.gov/psd/
http://daac.gsfc.nasa.gov/precipitation/TRMM_README/TRMM_3B43_readme.shtml
https://www.esrl.noaa.gov/psd/data/climateindices/list/
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/index.html
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/index.html
http://dx.doi.org/10.1038/s41598-018-24021-x


www.nature.com/scientificreports/

1 2SCIENTIfIC REPORTS |  (2018) 8:6026  | DOI:10.1038/s41598-018-24021-x

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	The local and global climate forcings induced inhomogeneity of Indian rainfall

	Results and Discussion

	Changes in the rainfall. 
	Seasonal variability: role of local and global climate forcings. 
	Drivers of rainfall variability estimated using the MLR method. 
	ISMR. 
	NEMR. 
	Pre-monsoon and winter seasons. 

	Trends in Indian rainfall. 
	MLR method. 
	Simple linear regression method. 


	Conclusions

	Methods

	Acknowledgements

	Figure 1 Schematic of the world map with regions considered for the climate modes are displayed in different colours as shown by the legend.
	Figure 2 Schematic of Indian climate regions as classified by India Meteorological Department (IMD).
	﻿Figure 3 The climatology of monthly averaged rainfall rate (mm/day) over different climate regions of India as observed by rain gauges (IMD Data) and satellite instrument (TRMM), and from the merged rain gauge and satellite data sets (GPCP and CMAP) for 
	Figure 4 Contribution of different local and remote climate forcings on Indian rainfall in different seasons over 1979–2017 in the Peninsular (PI), West Central (WC), North West (NW), North Central (NC), and North East (NE) India and for winter (January-F
	Figure 5 Top panel: The rainfall anomaly computed (thick solid line) for the ISMR (June-July-August-September) from the average of GPCP and CMAP data sets, and the regressed data (thin solid line).
	Figure 6 Top panel: The rainfall anomaly computed (thick solid line) for the NEMR (October-November-December) from the average of GPCP and CMAP data sets, and the regressed data (thin solid line).
	Table 1 The trends (mm/day/dec) estimated using the multiple linear regression method from the rainfall anomalies computed for the periods 1979–2012, 1979–2017 and 1998–2017, as available from each instrument and the average (GPCP and CMAP) data for winte
	Table 2 The trends (mm/day/dec) estimated using simple linear regression method (without including climate modes in the model) from the rainfall anomalies for the periods 1979–2012, 1979–2017 and 1998–2017, as available from each instrument and the averag




