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Abstract
This study explores the potential of atmospheric moisture content, its transport and its divergence
over the ocean and land as proxies for the variability of Indian summer monsoon rainfall (ISMR)
for the period 1950–2019. The analyses using multiple linear regression reveal that the interannual
and intraseasonal variability of ISMR and the mean ISMR is largely controlled by Arabian Sea
moisture flux and Ganga river basin moisture content, and these parameters exhibit statistically
significant high correlations in most regions. The regression model and the parameters are
statistically significant and the model could explain rainfall variability of about 12%–50% in
various regions. The model shows a false alarm rate (FAR) of 0.25–0.45 and a probability of
detection (POD) of 0.43–0.50 for wet years in West Central, North West and North Central India.
The FAR and POD are about 0.06–0.32 and 0.60–0.70, respectively for dry years in those regions.
The model reproduces flood and drought years of about 32%–50% and 55%–70% in those regions.
Also, the moisture indices could clearly identify the majority of wet and dry years that occurred
during the period. The ISMR variability associated with moisture indices is unaffected by El Niño
Southern Oscillation. Henceforth, this study demonstrates the significance of atmospheric
moisture on regional rainfall distribution and suggests that these parameters can be used in both
statistical and dynamical models to better predict monsoon and global precipitation.

1. Introduction

The hydrological cycle is an important natural pro-
cess in which water reaches the atmosphere from
water bodies through evaporation and plants through
evapotranspiration, which eventually returns to the
ground as precipitation. Generally, the Hadley cell in
the austral winter supplies the water vapor required
for the boreal summer. Therefore, precipitation in
the northern hemisphere during boreal summer is
made available by moisture in the austral winter,
particularly in tropical regions (Peixóto and Oort
1983). In India, there are two main rainy sea-
sons: the southwest (June through September—JJAS)
and northeast (October through December—OND)
monsoons. The southwest monsoon is the major
rainy season bringingmoist air from the oceans to the
Indian subcontinent, known as the Indian Summer

Monsoon (ISM) (Pant and Kumar 1997). During this
season, moisture transport is regulated by southw-
est winds followed by the cross-equatorial flow that
normally decides the strength of moisture trans-
port and thus the nature of the ISM to some extent
(Ramesh Kumar et al 1999).

It is well known that the relationship between
ISM rainfall (ISMR) and El Niño Southern Oscil-
lation (ENSO) has been strong in previous decades
(Annamalai and Liu 2005, Mishra et al 2012, Ashok
et al 2001), but weak in the recent decades (Krishna
Kumar et al 1999, Ashok et al 2001, Pai 2004, Hrudya
et al 2020, Seetha et al 2020); while ISMR is cor-
related well with the Indian Ocean Dipole events
(Wang et al 2015, Gadgil and Francis 2016, Yun and
Timmerman 2018). Several proxies like Atlantic mul-
tidecadal oscillation, Atlantic zonal mode, El Niño
modoki and extratropical sea surface temperature
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that affect ISMR have also been introduced recently
(Goswami et al 2006, Zhang et al 2006, Kucharski
et al 2008, Pottapinjara et al 2014, Chattopadhyay
et al 2015, Feifei et al 2011, Garfinkel et al 2013),
but were not very successful in accurate prediction
of ISMR. Therefore, it is important to investigate
other factors that can be used for predicting ISMR
together with the existing climate forcings. Several
studies (e.g. Gautam and Pandey 1995, Fasullo and
Webster 2002) reported the role of moisture trans-
port in deciding the onset and withdrawal of ISMR
and wet or dry monsoon years in India. It also modu-
lates the frequency of monsoon depressions over the
Bay of Bengal, which is a major factor in deciding
the strength of ISMR (Vishnu et al 2016, Vishnu et al
2018). A study by Luis and Pandey (2004) noted sur-
face atmospheric moisture convergence as a predictor
for ISMR. Similarly, Ramakrishna et al (2017) showed
the influence of moisture divergence for the low rain-
fall over India in June 2014. Apart from these, the total
moisture content, measured as the precipitable water
content (PWC), is also considered as a precursor of
onset and withdrawal of Indian monsoon in a study
by Puviarasan et al (2015). Similarly, the keymoisture
source regions and their contributions to ISMR have
already been identified in previous works (Shukla and
Misra 1977, Mei et al 2015, Pathak et al 2017) and
are the western, central and upper Indian Ocean, the
Ganga river basin and the Red Sea.

Atmospheric moisture is a key driver to extreme
weather events, and the hydrological cycle is essential
for life on Earth and, therefore, their changes have to
be monitored to predict extreme rainfall in the con-
text of global warming. The abovementioned stud-
ies emphasize the importance of atmospheric mois-
ture content, its transport and divergence, and their
connections with ISMR. However, the application of
moisture-related factors as proxies of rainfall changes
in India has not been examined thoroughly. Hence-
forth, this study presents new indices with respect to
the atmospheric moisture parameters of PWC, ver-
tically integrated moisture flux (VIMF) and vertically
integrated moisture flux divergence (VIMFD) over
various source regions, and analyze their influences
on the regional rainfall changes in India using a mul-
tiple linear regression (MLR) model. The interan-
nual and intraseasonal variations of ISMR and the
changes inmean ISMRassociatedwith thesemoisture
indices are investigated. Then, the potential of these
new indices in explaining extreme weather events is
also examined. The influence of ENSO on the mois-
ture parameters is analyzed, and their combined effect
in improving the model and interpreting the regional
rainfall variability is assessed.

2. Data andmethods

2.1. Rainfall data
The India Meteorological Department (IMD) grid-
ded daily rainfall measurements made from rain

gauges installed at different places in India are
used for the period 1950–2019. The data avail-
able on a 0.25◦ × 0.25◦ latitude × longitude hori-
zontal resolution are area-averaged over different
geographic locations: Peninsular India (PI), West
Central India (WCI), North West India (NWI),
North Central India (NCI) and North East India
(NEI). The exact locations of these regions are given
in figure S1. PI includes Andhra Pradesh, Tamil
Nadu, Kerala, Karnataka and Goa. WCI includes
Maharashtra, Madhya Pradesh and Telangana. NWI
includes Gujarat, Rajasthan, Punjab and Haryana.
NCI includesDelhi, Uthar Pradesh, Bihar, Jharkhand,
Chhattisgarh and Odisha. NEI includes West Bengal,
Sikkim, Meghalaya, Tripura, Mizoram, Manipur,
Nagaland, Arunachal Pradesh and Assam.

The anomaly of monthly accumulated rainfall
time series (in mm/month) for the months from
June to September (JJAS) is computed by subtracting
monthly climatology (1950–2019) from the accumu-
lated data for the correspondingmonth over the study
regions. Similarly, anomaly of JJAS seasonal rain-
fall, both accumulated in mm/season and averaged
in mm/day is calculated by subtracting correspond-
ing seasonal climatology from the respective data over
the mentioned locations. The percentage deviation
(in %) of JJAS rainfall is evaluated by dividing the
accumulated seasonal climatology from the accumu-
lated seasonal rainfall anomaly time series. Thus, four
sets of rainfall anomaly time series (monthly accumu-
lated, accumulated JJAS rainfall, mean JJAS rainfall
and percentage deviation of JJAS rainfall) are made
for MLR analysis with moisture indices.

2.2. Regression indices
The zonal and meridional wind components and
specific humidity data at pressure levels of 1000,
925, 850, 700, 600, 500, 400 and 300 hPa on
a 2.5◦ × 2.5◦ spatial resolution for 6 h intervals
taken from the National Center for Environmental
Prediction and National Center for Atmospheric
Research (NCEP/NCAR) reanalysis (Kalnay et al
1996) are used for the moisture flux analyses. The
multivariate ENSO index (MEI) data taken from
https://www.esrl.noaa.gov/psd/data/climateindices/
list/ for the period 1950–2018 and updated from
https://www.esrl.noaa.gov/psd/enso/mei/data/meiv2.
data for 2019 are used as ENSO indices. The mois-
ture indices are created from the atmospheric mois-
ture parameters of PWC, VIMF and VIMFD over the
moisture source regions as mentioned below. These
moisture parameters are directly connected to atmo-
spheric dynamics and regional climate. Therefore, the
indices made from these factors would also represent
changes in climate and atmospheric dynamics.

The moisture source regions are selected from
the VIMFD values at 1000–850 and 1000–300 hPa
levels as illustrated in figure S2 and are Ara-
bian Sea (5◦S –15◦N; 48◦–78◦E), Bay of Bengal
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Figure 1. The positions of moisture source regions such as Arabian Sea (AS), Bay of Bengal (BoB), central Indian Ocean (CIO)
and Ganga river basin (GRB) are shown in blue color. The regression indices are constructed from moisture parameters inside the
contours for the central Indian Ocean and Ganga river basin while those inside the rectangular boxes for the Arabian Sea and Bay
of Bengal.

(5◦S –15◦N; 80◦–100◦E), Central Indian Ocean
(25◦–5◦S; 50◦–100◦E) and Ganga River Basin (22◦–
30◦N; 74◦–88◦E) in which the first three are oceanic
regions and the fourth is a terrestrial source region.
The locations of these source regions are demarc-
ated in blue in figure 1. The moisture parameters
inside the rectangular boxes are considered for cre-
ating indices with respect to the Arabian Sea and
Bay of Bengal. The regression indices are com-
puted by averaging moisture parameters over the
marked regions for each month, and then monthly
climatology is subtracted from it and normalized
with the standard deviation over 1950–2019. Thus,
12 new moisture indices are made from VIMF,
VIMFD and PWC over the Arabian Sea (denoted as
VIMF_A, VIMFD_A and PWC_A, respectively), Bay
of Bengal (VIMF_B, VIMFD_B and PWC_B), central
Indian Ocean (VIMF_C, VIMFD_C and PWC_C)
and Ganga river basin (VIMF_G, VIMFD_G and
PWC_G). The temporal evolution of the moisture
indices at 1000–300 hPa level is provided in figure 2
and that at 1000–850 hPa level is given in figure S3.

2.3. Moisture flux calculation
The PWC (W) between the surface (Ps) and tth
level (Pt) atmospheric pressure (P) is calculated using
the acceleration due to gravity (g) and atmospheric
specific humidity (q) as given inUllah andGao (2012)
and is:

W=
1

g

ˆ Ps

Pt

qdP. (1)

The VIMF or the total instantaneous moisture flux
transport (Q) is calculated as:

Q⃗=
1

g

ˆ Ps

Pt

q⃗vdP. (2)

The vertical integration is performed over the lower
troposphere (1000–850 hPa) and vertical column
(1000–300 hPa) using the trapezoidal rule. ThisVIMF
is decomposed into divergent and rotational com-
ponents (Chakraborty et al 2006) as:

Q⃗= k̂×∇ψ+∇χ,

∇2ψ = k̂·∇× Q⃗,

∇2χ=∇· Q⃗. (3)

The divergence of VIMF (∇.Q⃗) is termed as VIMFD.

2.4. Formulation of the multiple linear regression
model
The influence of atmospheric moisture paramet-
ers and moisture sources on ISMR is diagnosed
by applying a statistical technique using the MLR
developed by Nair et al (2018). As a first step, the
correlation between the proxies and accumulated
JJAS rainfall is computed at different regions, and

3
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Figure 2. The regression indices created from the moisture parameters of vertically integrated moisture flux (VIMF—left panels),
vertically integrated moisture flux divergence (VIMFD—middle panels) and precipitable water content (PWC—right panels) at
1000–300 hPa level over the moisture source regions of Arabian Sea (AS—top panels), Bay of Bengal (BoB—second panels from
top), Central Indian Ocean (CI—third panels from top) and Ganga river basin (GRB—bottom panels). The dash-dotted lines
indicate±5, the dashed lines represent±1 and dotted lines signify zero.

then correlation among the proxies is calculated to
check the multicollinearity. The proxies that correl-
ate well with other indices are exempted from the
analysis. The stepwise regression procedure is used
to choose the best model from significant predictors
independent of each other (Draper and Smith 2015).
The parameter that is highly correlated with the rain-
fall and satisfying the limits of statistical significance
(as mentioned below) is included first, and then the
next most highly correlated variable is added. The
statistical significance of the model and parameters is
tested along with the improvement of the model. All
parameters are thus examined at each stage of adding
a new proxy and thereby removing variables that are
not significant or do not improve themodel perform-
ance (https://statisticsbyjim.com/regression/model-
specification-variable-selection/).

Several statistical methods are adopted to verify
the significance of parameters and model. The stat-
istical significance of parameters is assessed using
Student’s t-test and the overall significance of the
model is tested using the F-statistic. The overall fit
of the model is examined using R2 and adjusted
R2, and its overall accuracy is analyzed using root-
mean-square error (RMSE) and bias. The adjusted
R2 and F-statistic decide the improvement of the
model as their values are increased only if the added
proxy improves the model. The multicollinearity is
analyzed using tolerance and the variance inflation
factor (VIF). The tolerance should be greater than 0.1
or 0.2 (Lin 2008) and the VIF should be less than
2.5 (Senaviratna and Cooray 2019) for the model to
be free from multicollinearity. The autocorrelation

in the residuals is tested using the Durbin–Watson
(DW) statistic (Durbin and Watson 1950, Durbin
and Watson 1951) and its satisfied range is between
1.5 and 2.5. Therefore, appropriate regressionmodels
are constructed from the significant parameters that
explain maximum variance and are given in equa-
tions (4)–(8). The indices corresponding to the Bay of
Bengal are not used in the MLR model as these cor-
relate with other indices and are statistically insigni-
ficant.

PI(t) = CZZ(t)+CVIMF_AVIMF_A(t)

+CPWC_GPWC_G(t)

+CVIMFD_CVIMFD_C(t)+ ϵ(t), (4)

WCI(t) = CZZ(t)+CVIMF_AVIMF_A(t)

+CPWC_GPWC_G(t)

+CVIMFD_AVIMFD_A(t)+ ϵ(t), (5)

NWI(t) = CZZ(t)+CVIMF_AVIMF_A(t)

+CPWC_GPWC_G(t)

+CVIMF_CVIMF_C(t)+ ϵ(t), (6)

NCI(t) = CZZ(t)+CVIMF_AVIMF_A(t)

+CPWC_GPWC_G(t)+ ϵ(t), (7)

4
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NEI(t) = CZZ(t)+CVIMF_GVIMF_G(t)

+CPWC_APWC_A(t)+CPWC_CPWC_C(t)

+ ϵ(t), (8)

where the left-hand side of the equation is rain-
fall data at various regions and is treated as pre-
dictand, t is years, Z is a constant level term (taken
as value 1) and CZ is the intercept that helps to
adjust the fit not passing through the origin when a
new proxy is added to the equation and is used to
adjust the shift of mean predicted value with that of
mean observed value (Krzywinski and Altman 2015).
CVIMF_A, CVIMF_C and CVIMF_G are regression coeffi-
cients of VIMF_A, VIMF_C and VIMF_G, respect-
ively. Similarly, CVIMFD_A and CVIMFD_C are regression
coefficients of VIMFD_A and VIMFD_C, respect-
ively. CPWC_A, CPWC_C and CPWC_G are in turn regres-
sion coefficients of PWC_A, PWC_C and PWC_G,
and ε is the residual. The terms on the right-hand
side, except the intercept and residual, are considered
as predictors. Another point is that themoisture para-
meters at 1000–300 hPa are used as regression indices
in the PI, WCI, NWI and NCI regions whereas those
at 1000–850 hPa are used in NEI (details are provided
in section 3.1) for MLR analysis.

2.5. Methodology
The rainfall and proxy data are detrended for remov-
ing long-term trends from the data. The indices
are scaled to unity amplitude before performing
regression analysis so that regression coefficients are
obtained in the same unit of input data (Gopalapillai
2012). The parameters are solved using the least
squares method by minimizing the error of predict-
ors (Press et al 1989). The regression analysis is done
on four sets of rainfall data and are (1) accumulated
JJAS rainfall anomaly time series (2) accumulated
monthly rainfall anomaly time series for the months
from June to September, (3) mean JJAS rainfall and
(4) percentage deviation of JJAS rainfall. Similarly,
regression analysis is performed in three ways for the
accumulated JJAS rainfall anomaly with (1) themois-
ture indices, to see the influence of moisture indices
on ISMR, (2) moisture indices and ENSO index, to
check the combined impact of ENSO and moisture
indices, and (3) ENSO index alone, to see the indi-
vidual impact of ENSO on ISMR.

3. Results and discussion

3.1. Correlation analysis
Table 1 presents correlation coefficients between the
accumulated JJAS rainfall and moisture indices at
1000–300 and 1000–850 hPa levels along with the
ENSO index at different regions. The correlations,
statistically significant at a 95% confidence interval,
are given in bold numbers. MEI shows statistically
significant correlations of about−0.30,−0.39,−0.35
and−0.54with the rainfall in PI,WCI,NWI andNCI,

respectively and a weak positive correlation of about
0.03 in NEI. The other studies also find the similar
correlation of about −0.54 between ENSO Niño 3.4
index and all-India ISMRover 1958–2010 (Sajani et al
2015) and about −0.2 to −0.6 between ENSO and
ISMR for the period 1950–1999 (Li et al 2017).

The statistically significant correlation of JJAS
rainfall with VIMF and PWC is positive while that
with VIMFD is negative in PI, WCI, NWI and NCI
(except VIMF_G at 1000–850 hPa level in NWI). The
VIMF over the Arabian Sea, VIMFD over Ganga river
basin (except over NCI) and PWC over the Arabian
Sea and Ganga river basin show statistically signi-
ficant and strong correlations with rainfall in those
regions. In addition, a significant correlation is shown
by the Central Indian Ocean VIMF and PWC at
1000–300 hPa in NWI, and the central Indian Ocean
VIMFD at 1000–850 hPa in PI. The Bay of Bengal
PWC at 1000–300 hPa also shows a significant correl-
ation in PI. The correlation coefficients of the mois-
ture indices at 1000–300 hPa level are greater than
those computed at 1000–850 hPa with rainfall and
thus are used for MLR analysis in PI, WCI, NWI
and NCI. The rainfall shows the highest correlation
with the Ganga river basin VIMFD in PI (−0.54)
and NWI (−0.64) whereas with Arabian Sea VIMF in
WCI (0.65) and with Ganga river basin PWC in NCI
(0.56) at 1000–300 hPa. These correlations are higher
than that deduced between rainfall and MEI.

In NEI, rainfall shows a statistically significant
correlation with the Bay of Bengal VIMF (−0.25)
at 1000–300 hPa, the Bay of Bengal VIMF (−0.25),
Arabian Sea VIMFD (0.29) and Ganga river basin
PWC (0.25) at 1000–850 hPa. The moisture paramet-
ers integrated over 1000–850 hPa level are used as
proxies as these provide better results in comparison
to those at 1000–300 hPa level. Note that NEI is an
exception here as the features of monsoon rainfall are
opposite to that of other regions in India (Goswami
et al 2010, Nair et al 2018).

Table 2 illustrates the correlation coefficients
betweenmoisture indices themselves at 1000–300 hPa
level and also with MEI. In general, correlations
between the proxies are small and insignificant,
although statistically significant and strong correla-
tions exist between VIMFD and PWC over the Ara-
bian Sea (−0.64) and the Bay of Bengal (−0.83).
Similarly, the correlation between the Arabian Sea
VIMFD and the Bay of Bengal VIMFD is about
0.5 and that between the Ganga river basin VIMFD
and the Arabian Sea PWC is about −0.56. The
MEI anticorrelates with VIMF and PWC and cor-
relates with VIMFD. It shows statistically signific-
ant correlations with the Arabian Sea VIMF (−0.42),
VIMFD (+0.27) and PWC (−0.44), Ganga river basin
VIMF (−0.25) and PWC (−0.38), and central Indian
Ocean VIMFD (0.30). Similarly, correlations between
the moisture indices at 1000–850 hPa level along
with MEI are given in table S1 (is available online
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Table 1. The correlation coefficients between the accumulated JJAS rainfall and non-detrended explanatory parameters such as VIMF,
VIMFD and PWC over the Arabian Sea (VIMF_A, VIMFD_A, PWC_A), Bay of Bengal (VIMF_B, VIMFD_B, PWC_B), central Indian
Ocean (VIMF_C, VIMFD_C, PWC_C) and Ganga river basin (VIMF_G, VIMFD_G, PWC_G) at 1000–300 hPa and 1000–850 hPa level
along with multivariate ENSO Index (MEI) in Peninsular India (PI), West Central India (WCI), North West India (NWI), North Central
India (NCI) and North East India (NEI) for the period 1950–2019. The statistically significant correlations are given in bold numbers.

Parameters PI WCI NWI NCI NEI PI WCI NWI NCI NEI

MEI −0.30 −0.39 −0.35 −0.54 0.03
1000–300 hPa 1000–850 hPa

VIMF_A 0.53 0.65 0.54 0.50 −0.14 0.47 0.63 0.49 0.50 0.07
VIMF_B 0.01 0.21 −0.12 0.18 −0.25 −0.00 0.23 −0.11 0.17 −0.25
VIMF_C 0.20 0.19 0.32 0.06 −0.07 0.08 0.19 0.20 0.12 −0.06
VIMF_G −0.15 −0.03 −0.19 0.01 −0.00 −0.16 −0.09 −0.27 0.11 0.06
VIMFD_A −0.34 0.07 −0.17 0.01 0.21 −0.40 −0.10 −0.18 −0.16 0.29
VIMFD_B 0.04 −0.11 −0.00 −0.15 0.15 0.16 0.13 0.04 0.18 −0.11
VIMFD_C 0.18 0.05 0.00 −0.09 −0.04 0.28 0.07 0.15 −0.05 0.03
VIMFD_G −0.54 −0.37 −0.64 −0.15 0.07 −0.53 −0.37 −0.62 −0.12 0.07
PWC_A 0.44 0.35 0.39 0.29 −0.21 0.43 0.24 0.41 −0.04 0.05
PWC_B 0.33 0.21 0.24 0.09 −0.16 0.15 0.07 0.13 −0.20 0.00
PWC_C 0.17 0.11 0.24 0.03 −0.17 0.10 −0.05 0.18 −0.21 0.09
PWC_G 0.44 0.63 0.57 0.56 0.18 0.34 0.52 0.50 0.39 0.25

Figure 3. The temporal evolution of the observed and regressed accumulated JJAS rainfall anomaly (mm/season) and
contribution from moisture parameters in Peninsular India (PI), West Central India (WCI), North West India (NWI), North
Central India (NCI) and North East India (NEI) for the period 1950–2019.

at stacks.iop.org/ERL/16/014045/mmedia). The com-
bination of highly correlated proxies (greater than
0.4) is avoided for MLR analysis. However, the influ-
ence of MEI on ISMR has been tested keeping the
Arabian Sea VIMF in the model, even though these
exhibit correlation of −0.42, as Arabian Sea VIMF
contributes significantly to the ISMR and therefore
cannot be excluded (discussed in more detail below).

3.2. Contribution of moisture parameters
Figure 3 exhibits the temporal evolution of accu-
mulated JJAS rainfall anomaly and regressed data
(top panel) along with contributions from moisture
parameters (second to bottom panels) at different
regions for the period 1950–2019. The regression
model reproduces the features of the rainfall anom-
aly quite well. The Arabian Sea VIMF and Ganga
river basin PWC are common in PI, WCI, NWI and
NCI, and these factors contribute mainly to the rain-
fall. The Arabian Sea VIMF follows a similar pattern
with rainfall in the PI,WCI andNWI regions whereas

the Ganga river basin PWC follows the rainfall in
NCI. The Ganga river basin PWC also shows a similar
pattern with rainfall except in the 1960s in WCI
and NWI. The contributions of central Indian Ocean
VIMFD, Arabian Sea VIMFD and central Indian
Ocean VIMF are comparatively small in the respect-
ive regions of PI, WCI and NWI. In NEI, Ganga river
basin VIMF, Arabian Sea PWC and central Indian
Ocean PWC contribute significantly to the rainfall.
These three regression indices show large interan-
nual variations compared to the parameters in other
regions.

3.3. Variability of moisture
content/transport/divergence associated with
ISMR
Figure 4 (a) depicts the variability of atmospheric
moisture parameters regressed with the accumulated
JJAS rainfall anomaly in mm/season (σ[regression
coefficient × time series of proxy]) for the period
1950–2019. It explains the influence of parameters
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Figure 4. (a) The variability of moisture parameters associated with the accumulated JJAS rainfall in Peninsular India (PI), West
Central India (WCI), North West India (NWI), North Central India (NCI) and North East India (NEI) over 1950–2019. (b) Same
as (a), but including the ENSO index (MEI) in the multiple linear regression model.

on the interannual variability of rainfall. Among
the moisture source regions, the Arabian Sea and
Ganga river basin provide significant variability to
rainfall in PI, WCI, NWI and NCI. In NEI, the
Ganga river basin and the central Indian Ocean are
predominant, and then the Arabian Sea. Similarly,
PWC and VIMF explain the highest rainfall variab-
ility compared to VIMFD. The Arabian Sea VIMF
and Ganga river basin PWC show the highest influ-
ence on rainfall variability in PI (45mm/season)
and NCI (70mm/season), respectively. On the other
hand, both parameters affect the rainfall equally in
WCI (52–55mm/season) and NWI (45mm/season).
The other parameters that influence rainfall variab-
ility are central Indian Ocean VIMFD, Arabian Sea
VIMFD and central Indian Ocean VIMF in PI, WCI
and NWI, respectively. NEI is entirely different from
other regions where Ganga river basin VIMF and
central Indian Ocean PWC contribute significantly,
about 40mm/season and then Arabian Sea PWC,
about 25mm/season. These analyses suggest the con-
trol of moisture parameters as well as moisture source
regions to the JJAS rainfall variability.

3.4. Performance of the regressionmodel
The performance of the regression model and the
parameters are verified using several statistical tests
mentioned earlier. The t-test and probability eval-
uated for the coefficients of moisture parameters
regressed with the accumulated JJAS rainfall are given
in table 3(a). The probability is less than 0.01 here,
suggesting that parameters used in the model are all
significant at a 99% confidence interval. Addition-
ally, regression coefficients and their uncertainty (2×
standard deviation) are shown in table S2. The regres-
sion coefficients that are statistically significant at a
95% confidence interval are given in bold numbers.
The Arabian Sea VIMF and Ganga river basin PWC
are significant at a 95% confidence interval in PI,WCI
and NWI. In NCI, Ganga river basin PWC is signi-
ficant at 95% confidence interval whereas Arabian
sea VIMF is significant at a 85% confidence interval.

The Arabian Sea VIMFD and Central Indian Ocean
VIMF are significant at a 90% confidence interval in
WCI andNWI, respectively. InNEI, Ganga river basin
VIMF and central Indian Ocean PWC are significant
at a 90% confidence interval.

Table 4(a) provides the performance of regression
models as evaluated from various statistical methods
such as R2, adjusted R2, RMSE, bias, F-statistic, prob-
ability, tolerance, VIF and DW-statistic. The R2 val-
ues suggest that the regression model could explain
rainfall variability of about 32%, 50%, 41%, 48% and
12% in PI, WCI, NWI, NCI and NEI, respectively.
The adjusted R2 values are comparable to the R2 val-
ues; implying that the employed proxies enhance the
performance of the model. The RMSE and bias of the
model show small values of about 82–154 and −6e–
15 to +0.7e –15mm/season, respectively, indicating
the good performance of the model. The high F val-
ues, greater than its critical value at a level of 0.05 are
computed from the F-table, and the probabilities are
less than 0.01. This points out that the model results
are highly significant (at 99% confidence interval)
and explain noticeable variance in the PI, WCI, NWI
and NCI regions. The model is significant at a 95%
confidence interval (probability∼ 0.03) in NEI. Note
that the significance of model results increases as F
value increases. The tolerance is greater than 0.1 and
VIF is less than 2.5 in all regions; indicating that the
model is free from multicollinearity problems. The
DW statistic is also between 1.5 and 2.5 everywhere.
These statistical tests corroborate that the model is
robust for evaluating regional variability of monsoon
rainfall and henceforth could be a helpful tool for
forecasting ISMR. A study by Pandey et al (2020) also
stated the importance of global warming mode along
with ENSO in improving the skill of ISMR prediction
models.

3.5. Intraseasonal variability of ISMR
The intraseasonal variability of ISMR has a major
role in the interannual variability of ISMR and on

8
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Table 3. The parameter estimates such as t-statistics and probability of the coefficients of regression indices used in the multiple linear
regression model. The regression is performed for (a) the accumulated and (b) mean JJAS rainfall data, with moisture parameters, (c)
accumulated JJAS rainfall with moisture parameters and ENSO and (d) accumulated JJAS rainfall with ENSO in Peninsular India (PI),
West Central India (WCI), North West India (NWI), North Central India (NCI) and North East India (NEI) for the period 1950–2019.

(a) Accumulated JJAS rainfall—moisture parameters

Predictands PI WCI NWI NCI NEI

Predictors t-Value P-value t-Value P-value t-Value P-value t-Value P-value t-Value P-value
Constant −1.37 1.82 0.18 0.86 −0.55 1.42 0.05 0.96 6.94 0.00
PWC_G 51.08 0.00 97.85 0.00 83.45 0.00 135.99 0.00 — —
VIMF_A 85.37 0.00 102.81 0.00 81.45 0.00 30.88 0.00 — —
VIMF_C — — — — 46.21 0.00 — — — —
VIMF_G — — — — — — — — 80.07 0.00
VIMFD_A — — 40.01 0.00 — — — — — —
VIMFD_C 21.70 0.00 — — — — — — — —
PWC_A — — — — — — — — 53.50 0.00
PWC_C — — — — — — — — 77.63 0.00
(b) Mean JJAS rainfall—moisture parameters
Constant −0.04 1.04 0.01 1.00 −0.02 1.01 0.00 1.00 0.23 0.82
PWC_G 1.68 0.10 3.22 0.00 2.73 0.01 4.46 0.00 — —
VIMF_A 2.79 0.01 3.36 0.00 2.67 0.01 1.01 0.32 — —
VIMF_C — — — — 1.50 0.14 — — — —
VIMF_G — — — — — — — — 2.62 0.01
VIMFD_A — — 1.30 0.20 — — — — — —
VIMFD_C 0.71 0.48 — — — — — — — —
PWC_A — — — — — — — — 1.74 0.09
PWC_C — — — — — — — — 2.54 0.01
(c) Accumulated JJAS rainfall—moisture parameters and ENSO
Constant −4.74 2.00 6.47 0.00 −0.72 1.53 2.91 0.00 3.50 0.00
MEI 17.82 0.00 −30.71 2.00 0.92 0.36 −14.54 2.00 20.06 0.00
PWC_G 54.09 0.00 85.35 0.00 80.78 0.00 127.77 0.00 — —
VIMF_A 86.85 0.00 90.14 0.00 77.96 0.00 24.68 0.00 — —
VIMF_C — — — — 46.03 0.00 — — — —
VIMF_G — — — — — — — — 81.69 0.00
VIMFD_A — — 46.39 0.00 — — — — — —
VIMFD_C 14.47 0.00 — — — — — — — —
PWC_A — — — — — — — — 57.07 0.00
PWC_C — — — — — — — — 72.95 0.00
(d) Accumulated JJAS rainfall—ENSO
Constant 6.72 0.00 17.74 0.00 13.37 0.00 14.22 0.00 −0.71 1.52
MEI −38.98 2.00 −102.92 2.00 −77.56 2.00 −82.52 2.00 4.09 0.00

agriculture (Goswami et al 2006, Maharana and
Dimri 2016). Therefore, the accumulated monthly
rainfall anomaly time series is regressed using mois-
ture parameters to explore their influence on the
intraseasonal variability of rainfall. Figure 5 shows the
impact of moisture parameters on the intraseasonal
variability of monsoon rainfall in different regions.

In PI, monthly rainfall variability associated with
the Arabian Sea VIMF increases from June to July,
decreases in August and peaks in September. The
impact of Ganga river basin PWC on intraseasonal
rainfall variability remains the same throughout the
season with an anticorrelation in September. The
central Indian Ocean VIMFD affects rainfall vari-
ability only in September when it is anticorrelated
with it. In WCI, the Ganga river basin PWC related
rainfall variability is high and it peaks in Septem-
ber. The rainfall variability associated with the Ara-
bian Sea VIMF increases from June to August and
decreases in September. Similarly, the Arabian Sea

VIMFD shows a positive correlation throughout the
season and its influence is highest in June and August.
In NWI, all parameters show a small influence on
rainfall variability in June and peak variability is
exhibited by the Ganga river basin PWC in July and
September. The Influence of Arabian Sea VIMF is
highest in August. The central Indian Ocean VIMF
shows a positive correlation in June and July, and
a negative correlation in August and September. In
NCI, the Ganga river basin PWC shows large vari-
ability which decreases from June to September. The
influence of Arabian Sea VIMF is small with an anti-
correlation in June and July, but a positive correla-
tion in August and September. In NEI, the influence
of the Ganga river basin VIMF is large and similar
in June and July, about 16–18mm/month and also
in August and September, about 12–13mm/month.
The Arabian Sea and central Indian Ocean PWC
show intraseasonal variability with their maxima in
June and July, respectively in NEI. In general, large
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Table 4. The summary of the regression model fit such as the coefficient of multiple determination (R2 in %), adjusted R2 (A-R2) in %,
root-mean-square error (RMSE), bias (Bias), F-statistic (F-stat), probability (Prob), tolerance (TOL), variance inflation factor (VIF) and
Durbin–Watson statistic (DW-stat) estimated by regressing the (a) accumulated JJAS rainfall data with moisture parameters, (b) mean
JJAS rainfall data with moisture parameters, (c) accumulated JJAS rainfall with moisture parameters and ENSO and (d) accumulated
JJAS rainfall with ENSO for the period 1950–2019. The unit of RMSE and bias for the accumulated JJAS rainfall is mm/season and that
for the mean JJAS rainfall is mm/day. The F-statistic, probability, tolerance, VIF and DW statistic are unitless quantities.

(a) Accumulated JJAS rainfall-moisture parameters (b) Mean JJAS rainfall—moisture parameters

Statistics PI WCI NWI NCI NEI PI WCI NWI NCI NEI
R2 32.11 49.92 41.13 48.39 12.44 32.04 49.90 41.26 48.40 12.35
A-R2 29.03 47.65 38.46 46.85 8.46 28.95 47.62 38.59 46.86 8.36
RMSE 91.57 90.80 95.07 82.70 154.36 0.75 0.74 0.78 0.68 1.26
Bias −1.7e−15 −2.2e−15 6.5e−16 −1.2e−15 −6.0e−15 2.7e−17 −1.7e−17 −3.4e−18 −1.2e−17 −6.7e−18
F-stat 10.41 21.93 15.37 31.41 3.13 10.37 21.91 15.45 31.42 3.10
Prob <0.001 <0.001 <0.001 <0.001 0.03 <0.001 <0.001 <0.001 <0.001 0.03
TOL 0.68 0.50 0.59 0.52 0.88 0.68 0.50 0.59 0.52 0.88
VIF 1.47 2.00 1.70 1.94 1.14 1.47 2.00 1.70 1.94 1.14
DW-stat 1.96 2.20 1.83 2.23 1.85 1.97 2.20 1.83 2.22 1.86
(c) Accumulated JJAS rainfall-moisture parameters & ENSO (d) Accumulated JJAS rainfall—ENSO
R2 32.74 51.31 41.13 48.77 12.80 2.98 15.60 9.50 12.27 0.01
A-R2 28.60 48.32 37.51 46.44 7.43 1.56 14.36 8.17 10.98 −1.46
RMSE 91.84 90.22 95.80 83.02 155.22 107.84 116.14 116.13 107.03 162.50
Bias −2.2e−15 −2.2e−15 4.4e−16 −2.4e−15 −1.7e−15 1.3e−15 3.8e−15 −1.3e−15 −5.2e−16 −2.9e−15
F-stat 7.91 17.13 11.35 20.94 2.39 2.09 12.57 7.14 9.51 0.01
Prob <0.001 <0.001 <0.001 <0.001 0.06 0.15 <0.001 0.01 <0.00 0.92
TOL 0.67 0.49 0.59 0.51 0.87 0.97 0.84 0.91 0.88 1.00
VIF 1.49 2.05 1.70 1.95 1.15 1.03 1.18 1.10 1.14 1.00
DW-stat 2.02 2.23 1.84 2.23 1.83 1.59 2.27 1.68 2.40 1.70

Figure 5. (a) The impact of moisture parameters on the intraseasonal variability of rainfall in Peninsular India (PI), West Central
India (WCI), North West India (NWI), North Central India (NCI) and North East India (NEI) over 1950–2019. (b) Same as (a),
but adding ENSO index (MEI) in the multiple linear regression model.

intraseasonal variability is shown by PWC compared
to VIMF and VIMFD, and the central Indian Ocean
among the source regions. Also, parameters tend to
show anticorrelation mainly in September.

3.6. MLR analysis onmean ISMR
The mean ISMR is very important in forecasting
rainfall and has a strong impact on agriculture. It is
also demonstrated that the interannual variability is
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Figure 6. The temporal evolution of percentage deviation of the observed and regressed rainfall anomaly (%) estimated using
moisture indices in Peninsular India, West Central India, North West India, North Central India and North East India for the
period 1950–2019. The dotted lines indicate a±10% deviation from the long-term mean.

decisive to predict mean ISMR (Goswami et al 2006).
Here, mean JJAS rainfall is regressed with moisture
indices at different regions for the period 1950–2019.
The variability ofmoisture indices associated with the
mean JJAS rainfall is shown in figure S4. The temporal
evolution of the mean JJAS rainfall and regressed
rainfall anomaly is shown in figure S5. The pattern
of the observed and regressed anomaly of mean JJAS
rainfall is similar to that of the accumulated JJAS
rainfall as shown in figure 3. The statistical signi-
ficance of the parameters and MLR model for the
mean JJAS rainfall is given in tables 3(b) and 4(b),
respectively. The difference is that only the dominant
parameters like Arabian Sea VIMF and Ganga river
basin PWC are significant at 95% confidence inter-
val in PI, WCI and NWI. In NCI, only Ganga river
basin PWC is significant, while in NEI, Ganga river
basin VIMF and central Indian Ocean PWC are sig-
nificant. Despite this, the model is significant at a
99% confidence interval in PI, WCI, NWI and NCI as
the probability is less than 0.001 and it is significant
at a 95% confidence interval in NEI. The computed
RMSE and bias (in mm/day) are also very small. Note
that as long as the pattern of input and proxy data is
not changing, the model output remains the same.
This strongly attests that the model is highly stable
and very good in explaining regional variability of
rainfall.

3.7. Percentage deviation of ISMR: detection of wet
and dry years
Global warming enhances themoisture holding capa-
city of the atmosphere which in turn increases the
frequency of extreme weather events (Mukherjee
et al 2018). Therefore, the percentage departure of

JJAS rainfall anomaly is regressed with the moisture
indices to test the applicability of the model in repro-
ducing extreme events. The temporal evolution of
regressed data along with observed rainfall anomaly
for the period 1950–2019 is illustrated in figure 6. The
dotted lines represent±10%deviation from the long-
term mean, a condition for determining wet and dry
years. If a yearmeets the condition of anomaly greater
(less) than 10 (−10)%, that year is considered as a wet
(dry) year (Kumar et al 2013).

The analysis on regional average unveils a number
of extreme events with total wet years (>10% anom-
aly) of about 19, 20, 31, 14 and 24, and dry years
(<−10% anomaly) of about 20, 23, 24, 20 and 12
in PI, WCI, NWI, NCI and NEI, respectively. Out
of these, the regression model reproduces about 6,
10, 15, 7 and 0 wet years and 11, 16, 15, 12 and 3
dry years in the respective regions. The model could
explain about 32%, 50%, 48%, 50% and 4% of wet
and 55%, 70%, 63%, 60% and 25% of dry years in PI,
WCI, NWI, NCI and NEI, respectively. The perform-
ance of the model in reproducing extreme rainfall
events is calculated using a number of hits (H), false
alarms (F) andmisses (M), false alarm rate (FAR) and
the probability of detection (POD). If both measure-
ments and model satisfy the condition of the extreme
rainfall event, it is treated as a hit. If the model does
not capture the observed extreme event, it is con-
sidered as a miss. The false alarm is that the model
shows an extreme event that is not observed (Ash-
rit et al 2015, Sofiati and Nurlatifah 2019, McBride
and Ebert 2000). The FAR is the ratio of a number
of false alarms to the number of forecasts (H+F) and
POD is the ratio of a number of hits to the number
of observed events (H+M). The FAR should be low
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Table 5. (a) The number of hits (H), false alarms (F), misses (M), false alarm rate (FAR) and the probability of detection (POD) of
wet/dry years deduced from the accumulated JJAS rainfall anomaly regressed using moisture parameters in Peninsular India (PI), West
Central India (WCI), North West India (NWI), North Central India (NCI) and North East India (NEI) for the period 1950–2019. (b)
Same as (a), but regression is performed with moisture and ENSO indices.

(a) Moisture parameters (b) Moisture parameters and ENSO

Wet Dry Wet Dry

Region H F M FAR POD H F M FAR POD H F M FAR POD H F M FAR POD

PI 5 7 14 0.58 0.26 11 3 9 0.21 0.55 5 6 14 0.55 0.26 10 4 10 0.29 0.50
WCI 10 6 10 0.38 0.50 16 1 7 0.06 0.70 10 4 10 0.29 0.50 16 1 7 0.06 0.70
NWI 15 5 16 0.25 0.48 15 7 9 0.32 0.62 15 4 16 0.21 0.48 15 7 9 0.32 0.62
NCI 6 5 8 0.45 0.43 12 3 8 0.20 0.60 6 8 8 0.57 0.43 12 4 8 0.25 0.60
NEI 0 0 24 NaN 0.00 3 1 9 0.25 0.25 0 0 24 NaN 0.00 3 1 9 0.25 0.25

(∼0), whereas POD should be high (∼1) for a model
to be good (McCann 1983).

Table 5(a) shows H, F, M, FAR and POD com-
puted for the wet and dry years. The estimated FAR
is about 0.25–0.45 and POD is about 0.43–0.50 for
wet years in WCI, NWI and NCI. In PI, the number
of hits is lower than that of misses and so FAR is a
little bit high (0.58) and POD is low (0.26) for wet
years. In general the number of hits is greater than
the number of misses for dry years in PI, WCI, NWI
and NCI, indicating that the model could reproduce
a good number of dry years there. The FAR ranges
from 0.06 to 0.32 and POD varies from 0.55 to 0.70 in
these regions. On the other hand, themodel could not
explain well wet and dry years in NEI. Therefore, the
developedmodel is good in explaining extreme events
inWest Central, NorthWest andNorth Central India.
The Peninsular and North East India demand more
proxies to better interpret the rainfall variability. A
study by Rajeevan et al (2007) showed zero false alarm
and 77%–100% of POD for the models computed for
the period 1981–2004. Similarly, Sharma et al (2017)
presented FAR of about 0.5–0.8 and POD of 0.3 for
the period 2007–2015. Another study by Pandey et al
(2015) presented FAR of about 0.14–0.63 and POD of
about 0.33–0.60 over 1982–2013.

The importance is that the model could clearly
reproduce severe droughts of 2002, 2004, 2014 and
2015 everywhere except 2002 in PI, 2014 in WCI and
2004 in NCI. Therefore, an attempt is made to find
out a condition for determining wet and dry years
from moisture indices used in the model. It is found
that the indices stay within±0.5 in normal years, but
exceed this value during extreme events, particularly
the indices of VIMF over the Arabian Sea and PWC
over the Ganga river basin. A condition is henceforth
drawn for finding extreme events from the moisture
parameters such that if the index based on Ganga
river basin PWC or Arabian Sea VIMF is greater (less)
than +0.5 (−0.5); then, it will be a wet (dry) year.
These indices well satisfy this condition for wet/dry
years and even exceed+1 (−1) during extreme flood
(drought) years; demonstrating the effectiveness and
relevance of new indices. It attests to the applicab-
ility and potential of our statistical model based on

moisture-related parameters. The observed wet and
dry years that are reproduced by the model and cor-
responding moisture indices are shown in table S3.
A study by Wang et al (2015) reported that the IMD
could not forecast extreme events in 1994, 2002, 2004
and 2009 using statistical models for 1989–2012 and
confirms that this failure is due to the lack of proxies
regarding global warming in the model.

3.8. Influence of ENSO on ISMR
ENSO is considered as a major driver for explain-
ing the interannual variability of ISMR even though
their relationship was weakening after the 1980s.
Therefore, the influence of ENSO on moisture para-
meters and thus on the ISMR is analyzed regress-
ing the accumulated JJAS rainfall anomaly time
series with MEI and moisture indices. The statist-
ical significance of parameters estimated using t-test
is shown in table 3(c) and statistical results of the
model are provided in table 4(c) for various regions.
The statistical significance of moisture parameters
remains intact with the addition of MEI. MEI is
significant only in PI and NEI whereas the model
is significant in all regions. Ideally in the climate
data analysis, although a parameter is not statist-
ically significant, it can be used if it improves the
model (https://statisticsbyjim.com/regression/model-
specification-variable-selection/). The multicollin-
earity statistics (tolerance and VIF) are also inside the
favorable limit. The MEI improved the model with
an increase of R2 and adjusted R2 by ∼2% in WCI,
whereas slightly lower adjusted R2 and F-statistic
values are estimated in other regions. The rainfall
variability associated with MEI and moisture indices
is exhibited in Figure 4(b). As provided in the statist-
ical analysis results, MEI does not affect the rainfall
variability imposed by the moisture indices although
slight changes are observed. Note that the nature of
the ENSO index is reversed; it correlates with rain-
fall in PI and NEI, and is least affected in NWI. The
individual influence of ENSO on accumulated JJAS
rainfall is also analyzed. The statistical significance
of MEI and the corresponding model is provided in
tables 3(d) and 4(d), respectively. MEI is significant
only in NEI while the model is significant in WCI,
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NWI and NCI. The R2 is very low of about 2.98%,
15.6%, 9.5%, 12.3% and 0.01% in PI, WCI, NWI,
NCI and NEI, respectively. It categorically points out
that the ISMR variability cannot be explained only
with ENSO.

Furthermore, the combined impact of ENSO and
moisture parameters on the intraseasonal variabil-
ity of ISMR is analyzed regressing the accumulated
monthly rainfall anomaly from June to September
and is demonstrated in figure 5(b). Here, the behavior
of moisture indices remains intact, albeit with small
changes in absolute values. In general, MEI shows
anticorrelation with rainfall throughout the season;
however, a positive correlation is found mainly in PI
(June and September), NWI (June) and NEI (June
andAugust), suggesting large regional variability. The
influence of MEI is similar throughout the season in
PI. It is high in July and August in WCI. Similarly,
the influence of MEI peaks in July and then decreases
in NWI while it increases from July to September in
NCI. In NEI, the influence of MEI is high in Septem-
ber. Although the interannual variability is not influ-
enced by ENSO, the intraseasonal variability of rain-
fall shows a profound influence in NWI. In short,
ENSO influences rainfall in July and August in Penin-
sular, western central and northwestern parts of India
while in September in the central and eastern parts of
North India.

The wet and dry years are also examined using
a model developed from moisture parameters and
ENSO, and the resulting FAR, POD, number of hits,
false alarms and misses are shown in table 5(b). In
the case of wet years, the number of hits, misses and
hence the POD is similar to that evaluated from the
model based on moisture parameters. However, the
number of false alarms and FAR is lower in PI, WCI
and NWI while the number of false alarms and FAR
is a bit higher in NCI compared to the model formu-
lated onmoisture parameters. In the case of dry years,
F, H, M, FAR and POD are similar to that found in
a model derived from moisture parameters in WCI,
NWI, NCI and NEI. In PI, the number of hits is lower
by one while the number of false alarms and misses
is higher by one and therefore FAR is slightly higher
and POD is lower for the model including ENSO.

4. Conclusion

The MLR analysis uncovers the application of atmo-
spheric moisture parameters such as moisture con-
tent, moisture transport and its divergence over the
moisture source regions of the Arabian Sea, central
Indian Ocean and Ganga river basin as proxies of
ISMR. The regressionmodel ismade from statistically
significant moisture parameters that improve model
performance. Therefore, indices related to the Bay of
Bengal are not used as these are statistically insigni-
ficant. The regression is carried out for the seasonal,

monthly, mean and percentage deviation of southw-
est monsoon rainfall.

Themoisture indices provide statistically signific-
ant and strong correlations (greater than 0.4) with
ISMR. The regression model could explain regional
rainfall variability of about 12%–50% for the period
1950–2019. The contributions of moisture indices to
JJAS rainfall vary in various regions. Among themois-
ture source regions, the Arabian Sea and Ganga river
basin are the largest contributors to the regional dis-
tribution of rainfall. Similarly, moisture content and
its transport mainly decide the amount of rainfall in
all regions. The moisture transport is prevailing in PI
and moisture content is dominant in NCI while both
affect equally in West Central, North West and North
East India. The robustness of the developed model
is checked using a number of statistical tests and the
model fulfills the conditions for being a good model.
The F-values are highly significant (at 99% confid-
ence interval) at four regions implying that themodel
explains regional rainfall variability very well. The
model could explain the intraseasonal rainfall variab-
ility and the variability of mean JJAS rainfall too.

The regression model could reproduce about 6
(11), 10 (16), 15 (15), 7 (12) and 0 (3) wet (dry) years
out of the 19 (20), 20 (23), 31 (24), 14 (20) and 24
(12) observed wet (dry) years in PI, WCI, NWI and
NCI, respectively. The model explains about 32%–
50%of drought years, especially 2002, 2004, 2014 and
2015, and about 55%–70% of flood years occurred in
those regions. In addition, the atmospheric moisture
indices based on Arabian Sea VIMF and Ganga river
basin PWCcanbe used for detectingwet anddry years
such that their index is greater than 0.5 for a wet year
and less than−0.5 for a dry year and exceed+1 (−1)
during extreme flood (drought) years. The model
shows a FAR of 0.25–0.58 (0.06–0.32) and POD of
0.26–0.50 (0.55–0.70) forwet (dry) years in all regions
except in North East India and that demands careful
evaluation considering other relevant proxies in the
model.

ENSO shows a good correlation with ISMR,
though it is smaller than the correlation between
ISMR and moisture indices. The regression analysis
reveals that the ISMR variability associated with the
moisture indices is unchanged in the presence of the
ENSO index while ENSO shows a positive correlation
in Peninsular andNorth East India and a negative cor-
relation in other regions. The ENSO index improved
themodel by 2% inWCI. ENSO shows a strong influ-
ence on the intraseasonal variations though it is not
affecting the seasonal variability of rainfall in North
West India. It mainly affects the July and August rain-
fall in Peninsular, West Central and North West India
while September rainfall in North Central and North
East India. The extreme events evaluated from the
model based upon moisture parameters and ENSO
are almost similar to that deduced from the model
created on moisture parameters.
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Henceforth, this study demonstrates the signific-
ance ofmoisture content, its transport and divergence
on regional rainfall distribution. This study recom-
mends that these parameters can be used in both stat-
istical and dynamical models to better predict ISMR.
It also attests to the importance of local factors in
explaining ISMR, as the local factors are affected by
the change in global factors. The new indices made
from the atmospheric moisture parameters can be
employed as proxies for climate change predictions
and can be used together with the commonly used
parameter of ENSO for improving the prediction of
ISMR.
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