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Abstract The study presents long-term variability in satellite retrieved phytoplankton size 
classes (PSC) at two coastal sites, off Gopalpur and Visakhapatnam, in the north-western Bay 
of Bengal. The abundance-based models by Brewin et al. (2010) (B10) and Sahay et al. (2017) 
(S17), for retrieval of PSC (micro, nano, and picophytoplankton), from satellite data, were 
validated. Both the models performed well in the retrieval of nano and microphytoplankton. 
However, B10 performed poorly in retrieving picophytoplankton. The statistical analysis indi- 
cated better performance of the S17 model and hence was applied to Moderate Resolution 
Imaging Spectroradiometer onboard Aqua satellite (MODISA) data to understand the temporal 
(at monthly climatology) and spatial variability (from nearshore to offshore). The spatial distri- 
bution indicated nearshore dominance of micro and offshore dominance of picophytoplankton. 
In nearshore waters off Gopalpur, microphytoplankton dominated throughout the year except 
for months of south-west monsoon (June and July) where the dominance of picophytoplankton 
was observed. All PSC exhibited similar distribution at an annual scale with a primary peak 
during pre-monsoon (March and April) and a secondary peak during post-monsoon (September—
November). However, microphytoplankton concentration during post-monsoon was higher off
Gopalpur in comparison to Visakhapatnam. The higher microphytoplankton concentration 
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during pre-monsoon was attributed to recurrent phytoplankton blooms. Whereas, post-monsoon 
increment could be attributed to enhanced phytoplankton growth by availing nutrients sourced 
from monsoonal precipitation induced terrigenous influx. The outcome of the present study 
recommends the use of the S17 model for satellite retrieval of PSC from the north-western Bay 
of Bengal. 
© 2020 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

hytoplankton are microscopic free-floating and/or drifting 
utotrophs present within the photic zone of the ocean 
nd are major contributors to oceanic primary production 
 Uitz et al., 2010 ). Marine phytoplankton play a key charac-
er in the global carbon cycle and maintain the energy flow
n the oceanic food web ( Basu and Mackey, 2018 ). Apart
rom different taxonomic groups, phytoplankton, on the 
ther hand, represent a range of size classes categorized 
s microphytoplankton ( > 20 μm), nanophytoplankton ( < 20 
m and > 2 μm), and picophytoplankton ( < 2 μm and > 0.2
m) ( Arin et al., 2002 ). The phytoplankton size classes
PSC) dwell in specific physico-chemical environments 
ttributed to their nutrient uptake efficiency and cellular 
etabolism. In general, PSC play important role in marine 
iogeochemistry. Microphytoplankton (MP) are the par- 
icular size class photosynthetic group responsible for the 
ubstantial quantum of carbon export to the deep ocean and 
lay an important role in sustaining fisheries ( Murty et al.,
017 ). The transitional size class member, nanophytoplank- 
on (NP) are represented by small flagellates belonging 
o several phytoplankton groups attributable to a higher 
mount of carbon fixation in oscillating environmental 
onditions ( Hannah and Boney, 1983 ; Ribeiro et al., 2016 ).
n the other hand, picophytoplankton (PP) are mostly com- 
rised of cyanobacteria and prochlorophytes that prevail 
n oligotrophic waters due to high surface to volume ratio.
herefore, in the lower abundance condition of MP in olig-
trophic offshore waters, PP carries out carbon recycling 
 Campbell and Vaulot, 1993 ; Campbell et al., 1994 ). The
ize distribution of the phytoplankton community has a sig- 
ificant influence on water quality ( Baliarsingh et al., 2016 ,
018 ). In turn, the variability pattern of physico-chemical 
arameters of the ecosystem also regulates the PSC distri- 
ution ( Jyothibabu et al., 2015 ; Madhu et al., 2010 ). 
The PSC distribution is generally depicted in terms of 

hlorophyll- a (chl- a ) ( Sahay et al., 2017 ). It is important
o mention here that chl- a , the principal pigment of phy-
oplankton is broadly used as an index of phytoplankton 
iomass ( Huot et al., 2007 ). Chl- a exhibits a specific spec-
ral signature that enables its remote estimation using 
cean colour remote sensing ( IOCCG, 2000 ; Neil et al., 2019 ;
’Reilly et al., 1998 ). In the past decade, ocean colour re-
ote sensing has been widely used for retrieval of chl- a
rom remote sensors. With the advancement in technology 
nd novel bio-optical algorithms, PSC can be also retrieved 
rom satellite data ( Brewin et al., 2012 , 2014 ). The discrete
ampling of PSC lacks in providing information over a larger
patial area. This limitation can be overcome with satellite 
ata having the capability to provide information at a syn-
ptic scale with a high temporal resolution that can be used
o study intra- and inter-annual variability of individual PSC
 Sahay et al., 2017 ; Varunan and Shanmugam, 2015 ). 
The north Indian Ocean comprises two essential compo- 

ents, the Arabian Sea and the Bay of Bengal (BoB). Al-
hough located at the same latitude, the processes control-
ing water quality largely differ in both the seas. The wa-
er quality variability in the BoB is largely controlled by the
easonally reversing monsoon currents, effluents discharge 
rom perennial rivers and coastal industrial setups in addi-
ion to natural extreme events such as tropical cyclones. 
everal pockets of the north-western BoB experience recur- 
ent algal blooms, eutrophication, and pollution. Studies on 
SC distribution through in situ , as well as ocean colour sen-
ors, are meagre in the coastal waters of the BoB. 
The PSC forms an essential component of Phytoplank- 

on Functional Types (PFT) in addition to taxonomy and
igment composition. The PFTs are of great interest to
he biogeochemical community, especially in the coastal 
oB, where the biological ecosystem is largely controlled 
y local and remote physical forcing ( Lotliker et al., 2020 ;
iranda et al., 2020 ). The variability in PFTs can be directly
inked to the phytoplankton efficiency in carbon sequestra- 
ion and may be a function of climate change. On this back-
rop, the present study aims to bridge the knowledge gap
f PFT, in terms of PSC, with the objectives, (i) to evaluate
wo “abundance” based models for satellite estimation of 
SC, and (ii) to understand the long-term trend of PSC at
wo ecologically important coastal sites, off Gopalpur and 
ff Visakhapatnam, along the north-western BoB. 

. Material and methods 

.1. Study area 

he BoB experiences various dynamic oceanographic pro- 
esses such as seasonal reversal of wind, and current pat-
ern along with immense freshwater discharge through 
ivers resulting in excess precipitation over evaporation 
 Varkey et al., 1996 ). The present study was carried out
n the coastal waters off Gopalpur and off Visakhapatnam, 
orth-western BoB ( Figure 1 ). In general, waters along the
oast of the eastern seaboard of India on north and south
f 15 °N are considered as north-western and south-western
oB, respectively ( Lotliker et al., 2016 ). Both the study re-
ions experience annual precipitation during the tropical 
outh-west monsoon period from July to October bringing 
n adequate rainfall. However, the maximum rainfall is re-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1 Map of the study area. The dots indicate in situ 
sampling locations. The boxes represent areas of which time- 
series of satellite-derived size-fractionated chlorophyll- a (chl- 
a ) were presented. The solid lines represent transects along 
which time-series of size-fractionated chl- a from satellite data 
is presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ceived from July to September during the active phase of
the south-west monsoon season. The south-west monsoon
gets totally withdrawn by October—November. During the
north-east monsoon season, the BoB often experiences low
pressure resulting in tropical cyclones. A significant amount
of rainfall also occurs during this period. The north-east
monsoon becomes inactive by end of November with the
start of the winter season. The winter condition continues
until February, after which the hot pre-monsoon conditions
prevail spreading from March to May/June. 

The circulation pattern of both regions is governed
by more than one factor such as the effects of
seasonally reversing East India Coastal Current (EICC)
( Shetye et al., 1991 ), monsoonal wind-driven surface cur-
rent ( Vinayachandran and Mathew, 2003 ), cyclonic circu-
lation ( Vinayachandran and Yamagata, 1998 ) and river dis-
charges flowing into the bay ( Rao et al., 2007 ). The two ma-
jor currents prevailing along this coast in a year are a north-
easterly current that flows during January—July and a south-
westerly current during August—December ( Shankar et al.,
2002 ). In addition, there are noticeable differences at
both the locations on the local scale. The coastal waters
off Gopalpur are well known for the periodic stay of mi-
gratory sea turtles, recurring high-biomass phytoplankton
blooms and jellyfish swarming ( Baliarsingh et al., 2016 ).
The formation of two local water types on both sides of
30 m bathymetry makes coastal waters off Gopalpur eco-
logically distinct ( Baliarsingh et al., 2015 ). The freshwa-
ter influx from the Rushikulya River estuary significantly
influences the coastal water quality off Gopalpur. Addi-
tionally, upwelling along the coast, discharge from anthro-
pogenic sources and sea-port activities also largely control
biogeochemistry of the coastal waters off Gopalpur. 

Visakhapatnam, (260 km south of Gopalpur), is a port city
and receive no direct major river discharge into its coastal
domain. However, a major river estuary (Godavari) is lo-
cated ∼200 km south of Visakhapatnam. The influx of Go-
davari estuary may have an impact on the coastal waters off
Visakhapatnam during the south-west monsoon season due
to high-flow condition ( Shankar et al., 1996 ). The other mi-
nor rivers such as Gosthani and the Sarada-Varaha which are
towards the north (15 km) and south (40 km), respectively
of Visakhapatnam city have a meager impact on the coastal
waters off Visakhapatnam during the non-monsoon season.
However, coastal upwelling along with anthropogenic ac-
tivities due to sea-port influences the biogeochemistry of
Visakhapatnam coastal waters. 

2.2. Methodology 

2.2.1. In situ sampling and analysis 
Seawater samples were collected onboard ORV Sagar Man-
jusha in four expeditions in the BoB during 2017 (May and
October) and 2018 (July and November). During these ex-
peditions, a total number of 18 samples for each PSC were
collected within a distance of ∼10 km from the coast. The
water samples were collected using Niskin sampling bottles
and a known volume was sequentially filtered through 20
μm (for MP), 2 μm (for NP) and 0.2 μm (for PP) pore size
filter papers ( Brewin et al., 2014 ). The filtration was carried
out using a flow-through vacuum pump (make: Sartorius,
model: Microstart Jet) under subdued light conditions. Sub-
sequently, each filter was transferred to a sterilized cryo-
tube and stored in liquid nitrogen until further analysis. 

The chl- a concentration of individual PSC was estimated
spectrophotometrically following the method prescribed by
Parsons et al. (1984) . The extraction of the pigment within
the residue retained on the filter paper was carried out us-
ing 90% acetone. The extraction was carried out overnight
with no light, under low temperature (in a refrigerator),
and thereafter centrifuged for 20 minutes at 4000 rpm.
The supernatant solution was then transferred to a 1 cm
path length cuvette for analysis in a Double Beam UV-Visible
Spectrophotometer (Make: Shimadzu, Model: UV-2600). The
extinction coefficients of the sample were measured at spe-
cific wavelengths using acetone as blank. The chl- a con-
centration (in mg m 

−3 ) was then calculated as follows
( Strickland and Parsons., 1965 ). 

Chl- a 
(
mg m 

−3 
) = 

[ ( 11 . 6 ×OD 665 ) −( 1 . 31 ×OD 645 ) −( 0 . 14 ×OD 630 ) ] ×v 
V ×l 

where OD is the optical density at discrete wavelengths af-
ter correction by the cell-to-cell blank and subtraction of
the absorbance at 750 nm, v is volume of acetone in ml, V is
the volume of filtered water in liter, and l is the path length
in cm. 

2.2.2. Satellite retrieval of size-fractionated 

chlorophyll- a 

The daily Level-3 chl- a concentration from Moderate Res-
olution Imaging Spectroradiometer onboard Aqua satel-
lite (MODISA) at 4 km resolution was acquired from Na-
tional Aeronautics and Space Administration (NASA)’s Ocean
Color Web supported by the Ocean Biology Processing
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Table 1 Model parameterization to calculate chlorophyll- a concentration in different size classes (pico, nano and microphy- 
toplankton), using satellite data, provided by Brewin et al. (2010) and Sahay et al. (2017) . The notations in the equations are 
chlorophyll- a concentration ( C ) which is the sum from pico ( C P ), nano ( C N ) and microphytoplankton ( C M ). C 

m 

PN and C 

m 

P are the 
asymptotic maximum values that can be attained by the combination of pico- and nanophytoplankton ( C PN ) and picophyto- 
plankton ( C P ), respectively. S PN and S P are the corresponding initial slopes. 

C = C P + C N + C M 

C PN = C 

m 

PN [1 − exp (−S PN C)] 
C M = C − C PN 

C P = C 

m 

P [1 − exp (−S P C)] 
C N = C PN − C P 

Parameter Brewin et al. (2010) Sahay et al. (2017) 

C 

m 

PN 0.977 1.2330 
C 

m 

P 0.095 0.7243 
S PN 0.910 0.6792 
S P 7.822 0.6645 
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with the concentrations of individual PSC. 
roup (OBPG) ( https://oceancolor.gsfc.nasa.gov/l3/ ). The 
bundance-based model of Brewin et al. (2010) (here- 
fter B10) and Sahay et al. (2017) (hereafter S17) 
ere used to calculate chl- a concentration of each PSC.
he B10 model is the extension of the approach of
atyendranath et al. (2001) , whereas the S17 model is ba-
ically the B10 model tuned for the Arabian Sea. The math-
matical formulations including the model parameters are 
rovided in Table 1 . These abundance-based models assume 
hat the concentration of total chl- a (C) is the sum of the
ndividual PSC fractions from PP ( C P ), NP ( C N ) and MP ( C M )
 Brewin et al., 2010 , 2012 ; Sahay et al., 2017 ). 

 = C P + C N + C M (1) 

The chl- a concentration of PP and the combined PP + NP
ractions was parameterized as follows: 

 P = C 

m 

P [ 1 − exp ( −S P C ) ] (2) 

 PN = C 

m 

PN [ 1 − exp ( −S PN C ) ] (3) 

here C 

m 

P and C 

m 

PN are the asymptotic values of maximum 

hl- a concentration attained by the combination of pico and 
anophytoplankton ( C PN ) and picophytoplankton ( C P ). S PN 

nd S P are the corresponding slopes. The chl- a concentra-
ion of MP and NP were subsequently calculated as follows: 

 M = C − C PN (4) 

 N = C PN − C P (5) 

The sensor-default atmospheric correction scheme was 
pplied while generating chl- a from MODISA. The default, 
cean chl- a with 3-band maximum ratio (OC3M) bio-optical 
lgorithm was used for estimation of chl- a from MODISA. 
he functional form of the algorithm is expressed below. 

o g 10 ( chl- a ) = a 0 + 

i =4 ∑ 

i =1 

a i 

{ 

lo g 10 

[ 

R rs ( λblue ) 
R rs 

(
λgreen 

)
] } i 

(6) 

 = [ 0 . 2424 , −2 . 7423 , 1 . 8017 , 0 . 0015 , −1 . 2280 ] (7) 
or MODISA, R rs ( λblue ) is the maximum of remote sensing re-
ectance ( R rs ) at wavelengths ( λ) 443 and 488 nm. λgreen is
47 nm. 
In addition, the monthly climatology of PSC was con-

tructed for the period from 2002—2018. The monthly cli-
atology was then averaged over a region of 0.5 ° × 0.5 ° off
opalpur (19.0—19.5 °N and 84.7—85.2 °E), and off Visakha- 
atnam (17.4—17.9 °N and 83.1—83.6 °E) for subsequent as-
essment. In addition, the fractions of chl- a concentration
f PP, NP and MP to total chl- a concentration were com-
uted along the transect off Gopalpur and off Visakhapat- 
am from nearshore to 200 km offshore. 

. Results and discussion 

.1. Model performance in satellite retrieval of 
SC 

he satellite estimates of PSC have an advantage over con-
entional in situ data as they provide information over large
patial domains. Such information is necessary to discern 
cosystem dynamics at the basin scale. However, the assess- 
ent of model accuracy in the retrieval of PSC from satel-

ite data is also very important. Therefore, two "abundance"
odels B10 and S17 were applied to MODISA data and val-

dated with in situ data generated within the study area.
he satellite data were extracted within a box of 3 × 3 pix-
ls, corresponding to in situ observations and the matchup
oints were selected containing more than 50% of the valid
ata ( Bailey and Werdell, 2006 ). In addition to the concen-
ration of chl- a , the fraction of individual PSC to total chl-
 was also validated. The fraction depicts the contribution
f individual PSC to the total concentration to represent
nd to understand the spatio-temporal trend ( Brewin et al.,
015 ; Devred et al., 2011 ; Sahay et al., 2017 ). In the present
tudy, fractions of individual PSC to total chl- a were used to
nderstand the long-term trend from nearshore to offshore 
aters. Therefore, the fractions were also validated along 

https://oceancolor.gsfc.nasa.gov/l3/
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Table 2 Performance of statistical indices for the relative errors between in situ measured and satellite estimated 
chlorophyll- a (chl- a ) concentration (mg m 

−3 ) in various size classes (P: Pico, N: Nano and M: Microphytoplankton) and their 
fractions (%) to total chl- a concentration (F_P: Pico, F_N: Nano and F_M: Micro-phytoplankton) using Brewin et al. (2010) and 
Sahay et al. (2017) algorithms. Statistical indices include slope (S), intercept (I), regression coefficient (R 2 ), the average ratio 
of in situ measured to satellite estimated value (r), root mean squared error (RMSE) and the relative percentage difference 
between in situ measured and satellite estimated value (RPD). A total of 13 data points were used for validation. 

S I R 2 r RMSE RPD 

Brewin et al. (2010) 
B10 

P 25.08 —1.99 0.51 0.32 0.28 —262 
N 0.45 0.05 0.72 1.81 0.23 40.2 
M 0.96 0.02 0.93 1.01 0.13 —12.6 
F_P 0.65 26.35 0.60 0.36 22.28 —235 
F_N 0.52 1.19 0.50 1.87 21.88 45.7 
F_M 0.77 8.81 0.83 1.00 5.21 —1.6 

Sahay et al. (2017) 
S17 

P 0.82 0.07 0.77 0.98 0.07 —7.8 
N 0.90 0.03 0.74 0.99 0.05 —7.7 
M 1.05 0.01 0.93 0.98 0.14 —15.5 
F_P 0.97 0.28 0.72 1.03 3.60 2.0 
F_N 0.89 2.24 0.78 1.03 2.28 2.6 
F_M 0.93 3.95 0.83 0.97 4.63 —4.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The coastal areas of the north-western BoB often remain
cloudy and a total of 13 match-up points were available.
The in situ chl- a concentration of PP, NP and MP varied
from 0.1 to 0.76, 0.07 to 0.87 and 0.05 to 2.88 mg m 

−3 ,
respectively which covers the entire dynamic range in the
north Indian Ocean ( Jyothibabu et al., 2013 ; Sarma et al.,
2016 ; Sahay et al., 2017 ). Therefore, the in situ data was
presented along with the dynamic range of the satellite
estimates, using B10 ( Figure 2 a—c) and S17 ( Figure 3 a—
c) model, for the corresponding months. The MODISA es-
timates of PSC are represented as minimum and maximum
values over a month covering in situ sampling date. In addi-
tion, the relationship between in situ measured and satel-
lite estimates of chl- a concentration in various size classes
along with their fractions were also validated using B10
( Figure 2 d—f) and S17 ( Figure 3 d—f) model. The statistical
indices for the relative errors between in situ measured and
MODISA estimates of PSC and their fractions (%) to total chl-
a concentration are provided in Table 2 . 

The validation analysis showed underestimation and
overestimation of the B10 model in retrieving PP ( Figure 2 a)
and NP ( Figure 2 b), respectively. The statistical indicators
also showed a high slope (25) and intercept (—1.99) for PP.
The poor performance of the B10 model in capturing the
in situ trend for PP is clearly evident with a low corre-
lation coefficient (R 2 = 0.51). The statistical indicators for
NP retrieval, using the B10 model showed low slope (0.45),
low intercept (0.05) and good correlation (R 2 = 0.72). The
B10 model performed well in estimating MP with all the
in situ data falling within the dynamic range of MODISA
( Figure 2 c) with better slope (0.96), lower intercept (0.02),
and good correlation (R 2 = 0.93). The estimated relative er-
ror in the retrieval of PSC from MODISA satellite data, using
B10 model, was 262% for PP, 40.2% for NP and 12.6% for MP. 

The S17 model performed relatively better, in compar-
ison to B10. The in situ data falls well within the dynamic
range of MODISA retrieved PP ( Figure 3 a), NP ( Figure 3 b) and
MP ( Figure 3 c). The statistical indices for S17 showed better
slope (0.82 to 1.05), lower intercept ( ≤ 0.01), a good corre-
lation coefficient (R 2 ≥ 0.74) and lower root mean squared
error (RMSE) ( ≤ 0.14). In addition, the estimated error in
the retrieval of PSC from MODISA satellite data, using the
S17 model, was 7.8% for PP, 7.7% for NP, and 15.5% for MP. 

The fraction of PSC to total chl- a concentration was also
statistically evaluated. The statistical performance indica-
tors are provided in Table 2 . The B10 model was found to
be underestimating fractions of PSC with a slope value of ≤
0.77. In addition, the fraction of PP and NP showed higher
RMSE ( ≥ 21.88), lower correlation coefficient (R 2 ≤ 0.6)
and estimated error was 235 and 45.7%, respectively. How-
ever, the fraction of MP from the B10 model showed good
performance with a slope value of 0.77, lower intercept
(8.81), lower RMSE (5.21) and a high correlation coefficient
(R 2 = 0.83). The estimated error was also lower (1.6%). 

The S17 model performed much better in the retrieval of
PSC fractions with a slope close to unity ( ≥ 0.89), low inter-
cept ( ≤ 3.95), low RMSE ( ≤4.63), high correlation (R2 ≥0.72)
and lower estimated error ( ≤ 4.4%). The overall statistical
results of PSC fraction was similar to that of absolute con-
centration where the poor performance of the B10 was ob-
served to estimate the fraction of PP and NP. Considering
the better performance, the subsequent analysis was car-
ried out using the S17 model. 

The estimation of PSC was carried out by using a three-
component abundance model that calculates the fractional
contribution from three PSC (PP, NP, and MP) to total chl-
a concentration. The B10 model was the extension of the
approach of Satyendranath et al. (2001) , which was based
on the assumption that the smaller cells dominate at lower
chl- a concentrations and large cells at higher chl- a con-
centrations. In addition, the parameterization of the B10
model was carried out using in situ data from the Atlantic
Ocean during the Atlantic Meridional Transect (AMT) cam-
paign ( Brewin et al., 2010 ). The B10 model performed well
at a global scale when applied to Sea-Viewing Wide Field-
of-View Sensor (SeaWiFS) data. Although the model was de-
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Figure 2 The left panel represents variability between in situ measured (black dots) and satellite estimated ( Brewin et al. 2010 ) 
chlorophyll- a (chl- a ) concentration of a) pico, b) nano and c) microphytoplankton. The dotted (blue) line represents the mini- 
mum and dashed (red) line represents maximum value from satellite data over a month covering in situ sampling date. The right 
panel represents scatter plot showing relationship between in situ measured and satellite estimated ( Brewin et al. 2010 ) chl- a 
concentration of d) pico, e) nano and f) microphytoplankton. The vertical bars indicate the standard deviation within in situ data. 
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Figure 3 The left panel represents variability between in situ measured (black dots) and satellite estimated ( Sahay et al. 2017 ) 
chlorophyll- a (chl- a ) concentration of a) pico, b) nano and c) microphytoplankton. The dotted (blue) line represents the minimum 

and dashed (red) line represents maximum value estimated from satellite data over a month covering in situ sampling date. The 
right panel represents scatter plot showing relationship between in situ measured and satellite estimated ( Sahay et al. 2017 ) chl- a 
concentration of d) pico, e) nano and f) microphytoplankton. The vertical bars indicate the standard deviation within in situ data. 
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Figure 4 Area averaged monthly climatolgical variabil- 
ity (2002—2018) of satellite estimated ( Sahay et al., 2017 ) 
chlorophyll- a (chl- a ) concentration of pico, nano and microphy- 
toplankton in coastal waters of a) Gopalpur and b) Visakhapat- 
nam. The area over which the average is taken is defined in 
Figure 1 . The solid lines represent mean and dotted lines rep- 
resent standard deviation. 

F
f
(

eloped for global application, the parameterization may 
ary with different biogeochemical provinces ( Devred et al., 
009 ). In contrast, the S17 model is the regionally tuned ver-
ion of Brewin et al. (2010) for the north Indian Ocean. The
17 model was tuned utilizing the in situ data from various
ndian expeditions in the Arabian Sea including TARA Ocean 
xpedition dataset available in SeaWiFS Bio-optical Archive 
nd Storage System (SeaBASS) maintained by the NASA —
BPG. The better performance of the S17 model could be 
ttributed very well to its regional parameterization. 

.2. Long-term spatio-temporal distribution of PSC 

he PSC are closely linked with several biogeochemical pro- 
esses that have significant forcing on the marine carbon cy- 
le, nutrient recycling and food web dynamics ( Irwin et al.,
006 ). Therefore, the dynamics of PSC within the study area
ere analyzed through its spatial and temporal variabil- 
ty. The monthly climatology of PSC concentration and frac- 
ions was generated from MODISA data using S17 model. The 
onthly time-series of PSC averaged over 0.5 ° × 0.5 ° region 
ff Gopalpur and Visakhapatnam is illustrated in Figure 4 . 
he overall variability showed a similar trend with a peak 
uring the pre-south-west monsoon (March—April) and the 
ost-south-west monsoon (October) period. However, there 
as a marked difference in terms of the magnitude of indi-
idual PSC, especially during south-west monsoon and post 
outh-west monsoon period. The distribution of PSC showed 
he dominance of MP throughout the year off Visakhapat- 
am ( Figure 4 b). However, PP dominated during south-west 
onsoon (June—July) and MP during rest of the year in 
oastal waters off Gopalpur. The cloudy condition and en- 
anced water column turbidity retards growth of large-sized 
hytoplankton in coastal waters and favours proliferation 
f small-sized phytoplankton during the monsoon season 
 Madhu et al., 2010 ). Further, the magnitude of all PSC was
igher off Gopalpur during the post-south-west monsoon 
eriod ( Figure 4 a). The higher concentration during pre-
onsoon could be attributed to the recurrent phytoplank- 
on bloom events ( Baliarsingh et al., 2016 ; Miranda et al.,
igure 5 Hovmöller diagram showing monthly climatological variability (2002—2018) in satellite estimated ( Sahay et al., 2017 ) 
ractions of a) pico, b) nano and c) microphytoplankton concentration to total chlorophyll- a (chl- a ) concentration along the transect 
described in Figure 1 ) off Gopalpur. 
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Figure 6 Hovmöller diagram showing monthly climatological variability (2002—2018) in satellite estimated ( Sahay et al., 2017 ) 
fractions of a) pico, b) nano and c) microphytoplankton concentration to total chlorophyll- a (chl- a ) concentration along the transect 
(described in Figure 1 ) off Visakhapatnam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2020 ). In general, the larger PSC prevails at higher con-
centrations of chl- a , whereas, both small, as well as large
phytoplankton play an important role in the variability of
chl- a at lower concentrations ( Arin et al., 2005 ). The post-
south-west monsoon increment could be attributed to en-
hanced phytoplankton growth by availing nutrients sourced
from monsoonal precipitation induced terrigenous influx.
The possible upwelling events enriching nutrients in the eu-
photic zone along the western BoB during the south-west
monsoon season could also have played a pivotal role in ele-
vating chl- a concentration ( Rao et al., 1986 ; Shankar et al.,
2002 ). 

In subsequent analysis, nearshore to offshore variability
in the fraction of PSC, off Gopalpur and Visakhapatnam, was
analyzed through Hovmöller diagram ( Figures 5 and 6 ). The
nearshore dominance of MP and offshore dominance of PP
were evident in both the areas. In nearshore region (up to
25 km from the coast), MP composition was nearly 70% that
gradually decreased offshore in both the areas during the
pre-south-west monsoon. During the post-south-west mon-
soon, up to 40% dominance of MP was observed off Gopalpur
at a distance of ∼4 km from the coast ( Figure 5 ). However,
the Visakhapatnam region showed less than 20% MP at a dis-
tance of ∼40 km from the coast ( Figure 6 ). In addition, dur-
ing the south-west monsoon, nearshore waters off Gopalpur
were observed with 40% of PP, 25% of NP and 35% of MP,
whereas in off Visakhapatnam, PP, NP, and MP was 30%, 30%
and 40%, respectively. 

In corroboration to the present study, Mitbavkar and
Anil (2011) have observed a higher abundance of PP in the
offshore region of the BoB. In the open ocean region of the
BoB, the PSCs percentage contribution to total chl- a have
been reported in the order of PP > NP > MP. The higher con-
tribution of PP was attributed to the low nutrient levels and
a deeper nitracline ( Sarma et al., 2016 ). The offshore higher
abundance of PP in the BoB was comparatively higher than
in the western counterpart, the Arabian Sea. Previous stud-
ies have reported ˜30% and 70—80% contribution of PP to
the total phytoplankton biomass in the Arabian Sea and the
BoB, respectively ( Baliarsingh et al., 2018 ; Mitbavkar and
Anil, 2011 ; Roy et al., 2006 ). As a function of size, PP is ca-
pable of maintaining high uptake rates at low nutrient con-
ditions, which gives a better competitive advantage over
other PSCs in oligotrophic regions ( Donald et al., 1997 ). In
addition, PP also confers a greater efficiency to absorb and
use solar radiation compared to larger PSC ( Agusti et al.,
1994 ). 

4. Conclusions 

Marine phytoplankton play a critical role in modulating the
earth’s climate and responsible for half of the planetary pri-
mary production. The phytoplankton biochemical functions
such as nutrient uptake and growth rate are largely con-
trolled by its size characteristics. In addition, absorption of
light, photosynthetic rate, export production and the struc-
ture of the marine food chain depend upon phytoplankton
size structure. The present study investigated the perfor-
mance of two “abundance” based models for satellite esti-
mation of PSC and to understand the long-term trend of PSC,
using the best-suited model, at two ecologically important
coastal sites, off Gopalpur and off Visakhapatnam, along the
north-western BoB. This is the first attempt to study the
long-term distribution of PSC using satellite data. The sig-
nificant conclusions drawn from the present study are (i)
better performance of three-component abundance-based
S17 model in the estimation of PSC from the north-western
BoB using MODISA satellite data, (ii) nearshore dominance
of MP that gradually reduces offshore, (iii) dominance of
MP throughout the year off Visakhapatnam, (iv) dominance
of PP during south-west monsoon and MP rest of the year,
respectively off Gopalpur, (v) possible source of higher MP
concentration during pre-monsoon attributed to recurrent
phytoplankton bloom, (vi) possible fuelling the post-south-
west monsoon increment in MP concentration from mon-
soonal precipitation induced terrigenous influx enhancing
phytoplankton growth. The present study recommends the
use of S17 model for satellite retrieval of phytoplankton
size classes from coastal waters of the north-western BoB.
The satellite-based detection of PSC has provided a new av-
enue to study the spatio-temporal distribution that can be
further linked to ocean climate dynamics. In addition, the
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resent study bridged the knowledge gap on PSC distribu- 
ion in coastal waters of the north-western BoB. 
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