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Abstract The Bay of Bengal was witness to a severe cyclone named Amphan during the sum- 
mer of the year 2020. The National Institute of Ocean Technology (NIOT), INDIA moorings BD08 
and BD09 happened to be in the vicinity of the cyclone. The highly instrumented mooring 
recorded near-surface meteorological parameters like wind speed, sea surface temperature, 
and near-surface pressure. This article explores the possibility of using a non-parametric algo- 
rithm to identify different flow regimes using a one-month long time-series data of the near- 
surface parameters. The changes in the structure of the time series signal were statistically 
segmented using an unconstrained non-parametric algorithm. The non-parametric changepoint 
method was applied to time series of near-surface winds, sea surface temperature, sea level 
pressure, air temperature and salinity and the segmentations are consistent with visual ob- 
servations. Identifying different data segments and their simple parameterization is a cru- 
cial component and relating them to different flow regimes is useful for the development of 
parametrization schemes in weather and climate models. The segmentations can considerably 
simplify the parametrization schemes when expressed as linear functions. Moreover, the useful- 
ness of non-parametric automatic detection of data segments of similar statistical properties 
shall be more apparent when dealing with relatively long time series data. 
© 2022 Institute of Oceanology of the Polish Academy of Sciences. Production and host- 
ing by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

n recent years, a series of moorings have been deployed to 
btain valuable time series data related to basic climate 
ariables like wind speed, air temperature, air pressure, 
ea surface temperature, salinity, and ocean currents. Data 
rom these moorings are useful to carry out process-based 
eather and climate studies. Further the time series data 
specially the winds are used for reliable design and com- 
utations of structural loads on marine structures and moor- 
ngs. The variability in the time series is seldom stationary 
ver time and, for instance during cyclonic events the vari- 
bility change is quite dramatic and significant. 
Over the Indian subcontinent, the months of March, 

pril, and May are considered the spring inter-monsoon pe- 
iod. In general, during the spring inter-monsoon time, the 
kies are relatively cloud-free with light winds and intense 
cean heating. However, in the year 2020, the environmen- 
al conditions during the month of May were unusual in some 
spects. A significant synoptic-scale disturbance developed, 
hich progressed into a super cyclone named Amphan dur- 
ng May of 2020 over the Bay of Bengal. Amphan subse- 
uently made landfall over West Bengal, India, on May 21, 
020. 
An automated changepoint analysis is helpful for the fast 

etection of significant changes or breaks in the chang- 
ng structure of a time-series signal. This article explores 
he usefulness of a non-parametric change point detection 
pproach ( Killick and Eckley, 2014 ) to isolate various data 
egments (regimes) which relate to the air-sea interaction 
egimes during a fast-moving cyclone. This approach relies 
n meteorological variables recorded by the NIOT buoys 
D08 and BD09. These buoys are located near 18 °N and 
9 °E, which happened to be in the vicinity of cyclone Am- 
han . Cyclone Amphan initially started as a depression on 
6th May 2020 with winds of 25 knots (KT), and by mid- 
ight of 17th May, it developed into a cyclonic storm (CS), 
chieving winds exceeding 45 KT. During this period, the 
epression veered towards the head of the Bay of Bengal. 
he cyclonic storm further intensified into an extremely se- 
ere cyclonic storm (ESCS) by midnight of 18th May, achiev- 
ng winds of the order 100 KT. The ESCS further intensified 
nto a super cyclonic storm (SuCS) during the early hours 
f the day. The storm stayed on the course moving in the 
ortherly direction, maintaining wind speeds in the range 
5—120 KT’s during the 18—20th of May. It moved further 
orth, maintaining wind speed in the range of 95—80 KT, 
nd finally made landfall on 20th May with winds decreas- 
ng to 50—20 KT. A steady drop in sea level pressure from 

re-cyclone values of about 1010 mb to the lowest value 
f 970 mb during the 19—20th of May is observed. Pressure 
ips are associated with the passage of frontal structures. 
uring the passage of the frontal systems, we observe sig- 
ificant veering in the direction of the wind. These are es- 
entially non-stationary conditions. One of the usefulness of 
hangepoint algorithms is to detect statistically similar data 
egments in the time series. Figure 1 shows the trajectory 
ollowed by the cyclonic storm Amphan, based on the report 
eleased by Indian Meteorological Department ( IMD, 2020 ). 
he color bar on the left shows the bathymetry in meters, 
nd the color bar on the right shows the wind speed in 

nots. 
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The atmosphere and the oceans exchange mass, momen- 
um, and energy through the marine surface boundary layer. 
n most situations, the bulk of the transfer processes occurs 
ver the top 10 percent of the atmospheric/oceanic bound- 
ry layer. However, in extreme weather conditions, in cy- 
lones, depressions, the depth of the marine boundary layer 
an show considerable variations. Ocean and atmospheric 
oundary layers interact across a wide span of temporal and 
patial scales ( Fedorov and Ginzburg, 1992 ). 
High near-surface winds lead to substantial mixing in 

he upper surface layers of the ocean and give rise to 
eep mixed layers. Observations, laboratory experiments, 
nd numerical simulations show that the exchange of mo- 
entum and energy across the air-sea interface and var- 

ous scaling laws are different for low winds, moderate 
inds, and high wind regimes ( Zweers et al., 2010 ). Ac- 
ording to Fedorov and Ginzburg (1992) , the air-sea inter- 
ction processes can be broadly classified into five different 
egimes (time series segments with varying mean and vari- 
nce) based on forcing factors like wind speed, roughness 
ength etc. 

In numerical weather models, the exchange of momen- 
um ( C d ), sensible heat ( C e ) and latent heat ( C h ) across the
ir-sea interface is expressed in terms of the exchange co- 
fficients. All the relevant detailed equations are fully elab- 
rated in Edson et al. (2013) . The exchange coefficients of 
omentum (drag coefficients) over the years have been pa- 
ameterized in terms of the winds at 10 m from the mean 
ea level. However, a lot of scattering and outliers have 
een observed in the fitted curves. The scatter is mainly 
ttributed to the dependence of the exchange coefficients 
n variables like wind speed and waveage. It is difficult to 
arameterize these exchange coefficients in terms of the 
bovementioned variables. Intensive field experiments and 
bservations have given insights into other processes that 
re in play, particularly the dependence of sea state and 
he influence of sea spray during high wind conditions. Simi- 
arly, at very low wind conditions, the drag coefficients show 

 significant amount of scatter. These are again attributed 
o mechanisms that need further study. However, in con- 
itions where the surface winds are less than 30 m s −1 , to 
rst-order, the drag coefficient increases with an increase 
n moderate wind speed (about 5—6 m s −1 ) and decreases 
or wind speeds beyond 30 m s −1 ( Zweers et al., 2010 ). The 
bove observations are equally valid for the exchange coef- 
cients of sensible and latent heat. 
In the atmospheric/oceanographic community, the 

OARE bulk algorithm happens to be a widely used algo- 
ithm which estimates the fluxes of momentum (τ ) , sensi- 
le ( sh f) and latent heat ( lh f) at the air-sea interface using
ore easily measurable averaged quantities of wind speed, 
ir temperature, sea surface temperature, relative humid- 
ty, solar insolation, longwave radiation, rain, wave speed 
nd wave heights ( Edson et al., 2013 ). 
Figure 2 shows the time series of friction velocity ( u ∗), 

he momentum flux ( τ ), the sensible heat flux ( sh f) and 
he latent heat flux ( lh f) during the month of May 2020 
t 18 °N, 89 °E computed using the COARE bulk algorithm 

 Fairall et al., 2003 ; Edson et al., 2013 ; Yu, 2019 ). The fric-
ion velocity (top panel) was less than 0.2 m s −1 till 16th May 
nd the influence of increasing winds can be seen reflected 
n high values of u ∗ on 17—21 days of the month. The friction
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Figure 1 Track followed by the cyclone Amphan over the Bay of Bengal. 

Figure 2 Significant changes in the structure of the signal (friction velocity, wind stress, sensible heat flux and latent heat flux) 
are observed during 17—31 May 2020. 
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elocity is a crucial parameter in all the exchange processes 
elated to air-sea interaction. The lower panel (b) shows the 
ime series of momentum flux computed by the COARE al- 
orithm. Panel (c) and (d) show the time series of sensible 
nd latent heat fluxes, respectively. 
The motivating factor to show the time series of these 

ariables which are non-stationary over time, is that these 
ariables computed from bulk algorithms are in turn, pa- 
ameterized using fast sampled direct eddy covariance mea- 
urements ( Edson et al., 2013 ). Eddy covariance measure- 
ents strictly assume that the second moments (covari- 
nces) of these variables are assumed to be at least wide 
ense stationary ( Bendat and Piersol, 2011 ). This is where 
he need and importance of changepoint analysis become 
ore apparent. Changepoint algorithms can be effectively 
sed to extract data segments that are stationary over time 
nd useful when the data is voluminous in size. 
This article focuses on the changing structure of near- 

urface meteorological and ocean variables like air tem- 
erature and sea surface temperature (SST) cyclonic con- 
itions. The time series data are objectively segmented us- 
ng a robust changepoint algorithm using an unconstrained 
ptimization technique. Here we objectively extract the 
hanges in the time series mean and variance. The changes 
n the mean and variance of each variable across different 
egmentations, for example, the wind, are compared and 
orrelated with other variables like sea surface tempera- 
ure and salinity and air temperature. 
This article uses a robust parametric approach to detect 

hanges in mean and variance in the near-surface wind field 
uring cyclone Amphan . Automatic detection of changes in 
he flow structure is a relatively new application in oceano- 
raphic studies. Some of the first studies on changepoint 
nalysis related to oceanographic data have been carried 
ut by Killick and Eckley (2014) to analyze wave height clas- 
ification over the open oceans. This article identifies the 
hanging wind regimes using the PELT changepoint algo- 
ithm proposed by Killick and Eckley (2014) . The algorithm 

lso detects changes in mean and variance in air temper- 
ture, sea surface temperature, and sea surface salinity. 
ften there is some degree of correlation in all these vari- 
bles. An important result from this study is that the change 
n mean and variance in the wind speed data relates well to 
imilar changes in other variables. Truong, et al. (2020) suc- 
inctly reviews the background literature related to change- 
oint analysis and the relative advantages and limitations. 
The PELT method developed by Killick and Eck- 

ey (2014) uses a number of objective criteria like the 
ayesian information criteria (BIC) to fit the time series with 
he appropriate model with a minimum error (cost) func- 
ion. The article is organized as follows. In Section 2 , the 
ata and methods are briefly described. Section 3 gives an 
verview of the changepoint methodology and results with 
eference to the buoy data described in Section 4 . The sum- 
ary and related discussion on the limitations of this study 

s given in Section 5 . 

. Data and methods 

 subset of the data for the month May of 2020 is ex- 
racted which showed the significant changes because of 
313 
he passage of cyclone Amphan over a short period of 
ime. The NIOT buoys are instrumented with near-surface 
nd sub-surface sensors for acquiring meteorological and 
ceanographic data over extended periods of time. The 
ensors comply with the specifications as recommended by 
he IMET group in terms of accuracy and reliability. The data 
re acquired at hourly intervals. For every hour interval, 
he last ten minutes interval is taken as the data acquisition 
indow. The raw data is sampled at the rate of 1Hz for 
ost of the meteorological sensors. These meteorological 
arameters are sampled over the last 10 minutes of every 
our. These hourly samples are used for analysis. Similar 
veraging is done for all the other variables. Detailed infor- 
ation on the sensors, their make, accuracy and precision 
re provided in Venkatesan et al. (2013) . 
Near Surface winds at 3 m from the mean sea level are 

easured by a Lambrecht 1453 S2 F1000 anemometer. It 
rovides the wind speed and direction, wind speed in the 
ange 0—60 m s −1 . Other variables that are measured along 
ith the winds are the air temperature and relative humid- 
ty (Rotronic MP-101A), sea level pressure (Vaisala PTB330), 
hortwave and longwave radiations (Kipp and Zonen Pyra- 
ometer), and the sea surface temperature (SBE 37-SMP). 
 common data logging interface samples the data at the 
ame time and provides a time stamp, and the change points 
dentified in the wind speed time series are later mapped to 
ther variables. It is encouraging to note that the changes 
n the wind speed regimes correlate well with the changing 
tructure of the other near-surface variables. 

. Changepoint algorithm 

hangepoints are broadly defined as instances in time, such 
hat the statistical properties of the time series show signif- 
cant differences before and after a given instance. Change- 
oint analyses are often referred to as segmentations, 
tructural breakpoints ( Truong et al., 2020 ). The change- 
oint algorithm is briefly described as follows. Let the time 
eries be represented as { x 1 , x 2 . . . .. x n } . The data are as- 
umed to be an instance of distribution with parameter vec- 
or θ. It is assumed that there occurs a significant change in 
roperties of the time series at some time τ . A change is de-
ned in terms of the difference in properties between these 
wo segments. A change in the structure of the time series 
an arise from a change in the mean, or a change in variance
r some other parameter change in the distribution of the 
nderlying data ( Chen and Gupta, 2012 ). The general struc- 
ure of any changepoint algorithm is as follows ( Killick and 
ckley, 2014 ). 

.1. The Changepoint algorithm 

nput : 

A time series of n data points; x 1 , x 2 , .., x n . 
A test statistic λ(. ) which depends on the data. 
A changepoint position estimator ̂  k (. ) . 
A threshold rejection value c ∝ . 

• Initialize the sets C = [] and S = { [ 1 , n ] } 
• DO WHILE: S � = 0 
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Figure 3 Estimation of a number of changepoints. 
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◦ Choose an element of { S } ; denote this element as 
[ s, t ] . 

◦ If λ( y s : t ) < c ∝ delete [ s, t ] from S 
◦ If λ( y s : t ) > c ∝ then: 

� DELETE [ s, t ] from S 
� Calculate r = 

ˆ k ( y s : t ) + s − 1 and add r to C
� if r � = s add [ s, r ] to S 
� if r � = t − 1 add [ r + 1 , t ] to S 

• END DO 

utput: 
• The set of changepoints C

.2. Multiple change points 

he changepoint algorithm for a single change can be ex- 
ended for multiple changepoints in the time series. Assum- 
ng an ordered sequence of data, x 1: n = { x 1 , x 2 , ........ x n } and 
et p 1: m 

= { p 1 , p 2 , ........ p m 

} be the m number of change- 
oints in the time series x with a position in between 1 and 
 − 1 inclusive, which splits the data into m + 1 segments. 
urther, assuming that p 1 = 0 , p m +1 = n and the points 
re ordered such that p i < p j , if and only if i < j. Then
he i th segment contains values x p i −1 +1: p i ( Haynes et al., 
017 ; James and Matteson, 2015 ; Ross, 2015 ). 
The time series is modeled as x j = f( t j ) + e j ; 1 ≤ j ≤ n 

uch that f(t) is a function which is representative of 
he distribution from which x j is derived and e j is the se- 
uence of errors in the data segment. Assuming that the 
unction f is piecewise constant, there exist changepoints 
uch that f(t) = μk ∀ p k −1 < t < p k . Taking the error terms 
s a sequence of independent and identically distributed 
aussian variables, x j is then a sequence of independent 
aussian variables. The time series is therefore modeled 
s x j ∼ N( μk , σ

2 ) for p k −1 < j < p k . The model depends 
n the parameters ( θ = μ1 , μ2 , .... μm 

; σ 2 , p 1 , p 2 , ..... p m 

) . A 
ikelihood function is constructed as L ( θ; x 1 , x 2 , .... x n ) = 

 ( x 1 , x 2 , ... x n , θ ) , where P is the probability density function. 
The likelihood ratio L k / L k −1 of successive time series seg- 

ents across k − 1 ; k checks the goodness of fit based on the 
ates of their likelihood. The goodness of fit is taken as the 
est statistic, which is computed by maximizing across the 
ntire parameter space and the next fit is found by imposing 
 constraint. The constraint is the null hypothesis. If the null 
ypothesis is supported by the observed data, the two like- 
ihoods would not differ by more than the sampling error. A 
oss (cost) function is computed across each segment of the 
ata. The number of segments is inferred through the mini- 
ization of the segmentation cost. Multiple changepoints in 
he time series are identified by minimizing the loss (cost) 
unction C, which is the negative of the log of the likelihood 
atio. Across multiple segments of data, the cost function is 
imply the sum of the individual segments. 
 +1 

 

n =1 

[
C x p i −1 +1: p i ) 

] + β f ( m ) (1) 

here C is a cost function for any segment of the time 
eries and β f(m ) is a penalty to guard against over fit- 
ing. Different cost functions are used in changepoint de- 
ection such as negative log-likelihood ( Horváth, 1993 ), 
314 
uadratic loss and cumulative sums or those based on 
oth log-likelihood and length of the segment ( Chen and 
upta, 2012 ; Hopkins et al., 2010 ; Jackson et al., 2005 ). 
In many applications, the number of change points k is 

ither assumed to be known apriori. When k is known apri- 
ri, the changepoint problems are solved as a constrained 
inimization problem. When k is not known, then the ap- 
roach is to compute C k,n and the corresponding time series 
egments for a range of k = { 0 , 1 , . . ., K } where K is some 
hosen maximum number of change points. The number 
f changepoints are subsequently estimated by minimizing 
 k,n + f( k, n ) over k for a suitable penalty function f( k, n ) .
hese class of problems are the unconstrained minimization 
roblems. It is difficult to estimate an optimal penalty func- 
ion f( k, n ) for unconstrained optimization Killick and Eck- 
ey (2014) . 

If the penalty function is linear in k , with f( k, n ) = βk
or some β > 0 (which may depend on n ), then the number
f changepoints and corresponding segmentations are 

in 
k,τ

[∑ k 

j=0 
C 

(
y τ j +1: τ j +1 

)]
+ βk (2) 

The minimization in the above equation is efficiently im- 
lemented by a dynamic programming algorithm ( Killick and 
ckley, 2014 ). 
An efficient implementation of the optimal partition al- 

orithm by Jackson et al. (2005) is provided by Killick and 
ckley (2014) where the solution space of the change- 
oints are made optimal in their changepoint package 
 Killick and Eckley, 2014 ). It is implemented by pruning 
he solution space of the changepoint search space, mak- 
ng the algorithm computationally efficient. The change- 
oint package implements the minimization of the nega- 
ive log-likelihood cost function with options for using bi- 
ary segmentation, segment neighborhoods, and pruned 
xact linear time (PELT) to search the changepoints. To 
void overfitting, the penalty functions provided in the 
ackage include the Akaike’s Information Criterion (AIC), 
chwarz Information Criterion (SIC), Bayesian Information 
riterion (BIC), and the Modified Bayesian Information Cri- 
erion (MBIC) ( Maidstone et al., 2017 ). 
When the number of changepoints is not known a priori, 

e compute the cost and minimize the cost for different 
enalties. Figure 3 shows the number of change points and 
he associated penalty in computing the cost function. The 
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Figure 4 Time series of wind speed, sea surface temperature, sea level pressure, and location where there is a significant change 
in the signal. 
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umber of change points that can be inferred is two to three 
or this one-month time series wind speed data. It is shown 
n later paragraphs that the partitioning of the time series 
ata into two to three regimes is consistent with observa- 
ional studies, which show distinct flow regimes at different 
ind speeds. Note that because this is a purely statistical 
rocedure, some background knowledge on air-sea interac- 
ion processes helps correctly estimate the different num- 
er of regimes in the flow. 

. Results and discussions 

igure 4 shows the time series of wind speed, sea surface 
emperature (SST), and mean sea level pressure (SLP) in the 
hree panels for the month of May 2020. Three distinct wind 
peed time epochs in panel (a) can be visually seen, as pre- 
icted by the change point algorithm detailed in the pre- 
eding paragraphs. 
The first epoch from the change point algorithm, which is 

he first week, shows moderate windy conditions, while the 
ext week, which is segment number two, according to the 
hangepoint algorithm, shows somewhat weak winds with 
uch less variation at the small time scales. The time epoch 
rom May 16 to the end of the time series record corresponds 
o the third regime of the changepoint algorithm. In the 
hird regime, the winds start picking up strength during May 
6—17, and there is a steady rise in the wind speed. This 
s the epoch where there is the most significant change in 
ind speed. It is encouraging to see that these three epochs 
r flow regimes can be mapped to other variables like sea 
315 
urface temperature (SST) and sea level pressure (SLP) data. 
he different flow regimes are shown in panels (b) and (c) 
f Figure 4 . There is a steady rise in SST in the first epoch,
hich corresponds to a particular type of flow regime, with 
omewhat moderate diurnal(daily) variability in the tem- 
erature. The second epoch is the flow regime during May 
—17, during which there is enhanced diurnal variability in 
ST. However, the increasing trend in the mean tempera- 
ure is somewhat diminished in the second regime. The third 
poch shows the cyclone-induced cooling regime after May 
7. In general, in most observations cyclone induced cool- 
ng in SST is expected. Similarly, panel (c) shows that the 
LP is steady till May 09 and shows the tendency to reach 
ower levels during the latter half of the second epoch, 
hich corresponds to the second regime. Epoch three cor- 
esponds to the third flow regime, which shows a drastic 
all in the SLP. The distinct regimes can also be observed 
n the air temperature and salinity data in Figure 5 . The 
ir temperature data and SST data have a similar trend with 
uch more small-scale air temperature variability. Note the 
rastic fall in the third regime. The response of air temper- 
ture is much faster compared to SST. The ocean responds 
uch more slowly compared to the atmosphere. Panel (b) 
f Figure 5 shows the salinity time series. Notwithstanding 
he variability at the time scales smaller than one day, the 
alinity increases till the end of May 08. After that, it is 
ore or less steady. Later during the third epoch, the salin- 

ty shows a steady rise peaking to values near 33 psu. A 
ignificant drop is also seen in the third epoch of salinity, 
hich is perhaps associated with heavy precipitation during 
he cyclone. 
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Figure 5 Significant changes in the air temperature and salinity from the changepoint algorithm. 
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. Summary and conclusions 

n this article, a non-parametric changepoint algorithm is 
alidated over time-series of key environmental variables 
ike wind speed, air temperature, sea surface temperature, 
ea level pressure, sea surface salinity during the passage 
f cyclone Amphan over the Bay of Bengal. The time-series 
ata for this study is obtained from the NIOT moorings 
D08 and BD09 located at 18 °N, 89 °E in the head of the
ay of Bengal. Cyclones are associated with fast-changing 
ow regimes. Algorithms to detect changes in time-series 
ata fall in two broad categories, wherein in the first in- 
tance, the number of changes is known. These algorithms 
odel and detect changes by minimizing the loss function 
y constrained optimization. However, when the number of 
hanges in the time series structure is not known a priori, 
t is difficult to model and detect changes in the structure 
f the time-series signal. This class of problems falls un- 
er unconstrained optimization. One such changepoint algo- 
ithm proposed by Jackson et al. (2005) and efficiently im- 
lemented by Killick and Eckley (2014) is tested for oceano- 
raphic time-series data during cyclone conditions. 
It is shown that the PELT algorithm gives the expected 

ime series segments highlighting the various flow regimes 
n fast-evolving cyclonic conditions. The segmentation into 
ifferent regimes and time epochs is clearly seen in SST, 
LP, AT and SSS. This ability to carry out segmentation of 
he time series data into different regimes or segments is 
seful and has a number of applications. Apart from its use- 
316 
ulness to detect outliers, the segmented time series can 
e analyzed as standalone processes in an objective man- 
er, thereby separating out many of the mechanisms that 
rive the processes. Here we have only looked at a month 
f time series data. This does not really show the advantage 
f an objective changepoint algorithm to detect changes in 
ow fields and structure. Changepoint detection algorithms’ 
eal usefulness becomes more apparent while analyzing ex- 
remely long data records, wherein it is nearly impossible 
o visually/manually look for changes in mean and variance. 
his work is in that direction. In the future, the algorithm 

ould be tested for longer time series data looking for sig- 
ificant features and also would be extended to satellite 
magery. 
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