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Abstract 

To address gaps in wind data from the OceanSat-2 Scatterometer (OSCAT) over the Indian 

Ocean, this study explores the application of the Data Interpolating Empirical Orthogonal 

Functions (DINEOF) method. The performance of DINEOF was confirmed through 

comparisons with both original satellite observations and in situ buoy measurements, using 

daily and weekly wind composites over a two-year period. The results show a strong correlation 

(R ≈ 0.9) between DINEOF-reconstructed and original satellite wind fields, with Root Mean 

Square Deviation (RMSD) values ranging from 0.5 to 2.7 m s⁻¹ across various wind speed 

regimes. The method slightly underestimates winds below 3 m s⁻¹ and marginally overestimates 

those above 10 m s⁻¹ but shows optimal accuracy within the 3–10 m s⁻¹ range. These findings 

underscore the potential of DINEOF to improve the accuracy and continuity of satellite-derived 

wind datasets, contributing valuable insights for Indian Ocean climate studies and weather 

forecasting. 

Keywords: wind data reconstruction, satellite meteorology, climate research, wind field 

interpolation, DINEOF. 

Introduction 

Winds over the ocean surface are essential for understanding and predicting the condition of 

oceans, with applications ranging from navigation and optimal ship-route planning to 

forecasting cyclone tracks and intensities and studying ocean currents and circulation 

(McPhaden et al., 2009; Cotton, 2013). Accurate measurements of oceanic wind patterns are 

crucial for more general meteorological and climate-related research as well as for operational 

ocean monitoring. To drive general circulation models that replicate the interactions between 

the ocean and atmosphere, these measurements are essential inputs for ocean state forecast 

models (Gohil et al., 2007). 



Anemometers and Automatic Weather Stations (AWSs) on ships and moored buoys have 

historically been utilized to gather data on ocean winds. Complementary observations from 

space-based platforms are necessary because the scope of data coverage is limited by the spatial 

and temporal limitations of these in situ measurements (Troupin et al., 2010). Scatterometer-

equipped satellites are useful instruments for determining ocean surface wind fields across 

wide locations, offering reliable, effectively real-time data that is crucial for operational 

oceanography and climatology (Chakraborty & Kumar, 2013). 

Satellite-derived wind data, while invaluable, often suffer from gaps due to cloud cover, sensor 

limitations, and orbital constraints. These gaps can hinder the accuracy of meteorological and 

oceanographic models, making data reconstruction techniques essential for ensuring 

continuous and reliable datasets. 

An essential capability for wind monitoring in the Indian Ocean region and beyond has been 

added in recent years by the Oceansat-2 satellite, which was created by the Indian Space 

Research Organization (ISRO). Operating since September 2009, Oceansat-2 has been 

equipped with the OSCAT (Oceansat-2 Scatterometer), a Ku-band pencil beam scatterometer 

with a ground resolution of 50 × 50 km (Gohil et al., 2007). Research has confirmed that 

OSCAT-derived wind measurements are accurate and illustrate an impressive correlation with 

both reanalysis wind datasets and in situ buoy data from different oceanic basins (Chakraborty 

& Kumar, 2013; Sudha & Prasada Rao, 2013). 

Gridded daily wind composites for usage in operations have been created recently. These 

composites were created applying the Data-Interpolating Variational Analysis (DIVA) method, 

which demonstrated higher accuracy than more conventional techniques such as kriging 

(Bentamy & Fillon, 2012). The accuracy and suitability of these OSCAT composites for 

meteorological and oceanographic applications were validated by comparisons with ASCAT, 

QuickSCAT, and in situ data from RAMA and NDBP buoys (Udaya Bhaskar et al., 2013). 

Data-Interpolating Variational Analysis (DIVA) is a deterministic technique that fills in the 

gaps in daily wind field data by using spatial interpolation, which takes distance and data 

density into account. Because it generates smooth, continuous fields based on physical 

proximity and observed patterns, this technique performs particularly efficiently when there 

are only minor, dispersed gaps in the data (Bentamy et al., 2009). Conversely, DINEOF is a 

statistical technique that utilizes empirical orthogonal functions (EOFs) to determine dominant 

patterns, or modes, in the data in order to reconstruct missing values (Beckers & Rixen, 2003; 



Alvera-Azcárate et al., 2005). Due to its ability to take advantage of the temporal and spatial 

patterns of the dataset, this method performs better in situations with greater or more organized 

gaps. 

While DIVA is effective for small, scattered gaps, DINEOF's ability to handle larger and more 

structured data gaps makes it particularly suitable for the Indian Ocean region, where 

monsoonal patterns and cloud cover can lead to significant data loss. DINEOF's reliance on 

empirical orthogonal functions (EOFs) allows it to capture the dominant spatial and temporal 

patterns in the data, making it a robust choice for reconstructing wind fields in this dynamic 

region. A more comprehensive review of previous studies on wind data reconstruction 

techniques, particularly in the Indian Ocean region, would help contextualize the current 

research and highlight its unique contributions. 

By developing high-quality gridded wind fields for the Indian Ocean, the present investigation 

attempted to eliminate data gaps and improve wind data coverage. This study incorporated the 

DINEOF (Data Interpolating Empirical Orthogonal Functions) technique to reconstruct 

missing wind data utilizing OSCAT and in situ buoy data from 2012, providing a dependable 

solution for data continuity challenges. This investigation confirmed the accuracy of the 

reconstructed data by concentrating on a year with an enormous volume of buoy data coverage, 

providing insights into methodologies that could be applied globally across different spatial 

and temporal scales (Alvera‐Azcárate et al., 2007; Miles et al., 2009). 

Data & Methodology 

OSCAT Data 

The research implemented daily Level 3 (L3) OSCAT wind data for 2011–2012 with a 50 × 50 

km spatial resolution from the National Remote Sensing Centre's (NRSC) Oceansat-2 portal. 

To process the data into zonal (U) and meridional (V) wind components that are essential for 

meteorological and oceanographic analyses, the dataset included wind speed and direction 

from both ascending and descending satellite passes (Gohil et al., 2007). Near-real-time 

monitoring and operational applications were made possible by OSCAT's special two-day 

repeat cycle, which provides more frequent wind observations than ASCAT's five-day cycle 

(Sudha & Prasada Rao, 2013; Venkatesan et al., 2013). Cotton (2013) demonstrated that 

incorporating OSCAT wind data into forecasting models increased coverage and accuracy by 

about 40% for the validation year 2012. By generating high-quality, gap-free datasets required 

for comprehensive wind pattern analyses in oceanographic research and meteorological 



forecasting, the application of DINEOF in the current investigation further increased these 

advantages (Chakraborty & Kumar, 2013; Udaya Bhaskar et al., 2013; Bentamy & Fillon, 

2012; Bentamy et al., 2009). A more detailed description of the data preprocessing steps, 

including how the OSCAT data was quality-controlled and potential biases were addressed, 

would be beneficial. 

While OSCAT provides valuable wind data, it is important to note that the sensor may exhibit 

biases in certain conditions, such as high wind speeds or near coastal areas where land 

contamination can affect the accuracy of the measurements. These limitations were considered 

during the reconstruction process to ensure the reliability of the final dataset. 

In Situ Buoy Data 

The accuracy of interpolated wind components was evaluated using wind observations 

obtained directly from buoys. The Research Moored Array for African, Asian, and Australian 

Monsoon Analysis and Prediction (RAMA) buoys (McPhaden et al., 2009) and buoys operated 

by the Indian Ocean Observation Services (OOS-NIOT) (Venkatesan et al., 2013) were the 

primary sources of the daily average wind data. OOS-NIOT buoys record at a height of 3 meters 

above the sea surface, while RAMA buoys record at a height of 4 meters regarding wind 

direction and speed. Using the logarithmic wind profile method described by Panofsky and 

Dutton (1984), buoy data were adjusted to 10 meters above sea level to match scatterometer-

based wind measurements generated at this elevation. 

According to McPhaden et al. (2009), the accuracy of the RAMA buoy measurements was 0.3 

m/s for wind speed and 5° for wind direction. By comparison, the accuracy of OOS-NIOT buoy 

measurements was 3° for direction and 0.3 m/s for wind speed (Venkatesan et al., 2013). In 

order to validate the DINEOF-reconstructed OSCAT wind fields, these buoy data delivered a 

crucial point of reference. 

The randomly selected buoy locations throughout the Indian Ocean are illustrated in Figure 1, 

emphasizing their spatial coverage and applicability for cross-comparison with OSCAT data. 

Data Interpolation Empirical Orthogonal Functions (DINEOF) 

The DINEOF (Data Interpolating Empirical Orthogonal Functions) methodology is a data-

filling technique used in environmental data processing, introduced by Beckers and Rixen 

(2003) and later applied to sea surface temperature (SST) data by Alvera-Azcárate et al. (2005). 

The method flags missing data and assigns them an initial value of zero, effectively using the 



dataset's mean. The algorithm begins by performing an initial EOF decomposition with just 

one EOF, then iteratively recalculates the EOF until a convergence criterion is met. With each 

iteration, the missing data are updated with improved estimates, and additional EOFs are 

incrementally introduced up to an optimal number that minimizes cross-validation error. This 

process allows DINEOF to filter out noise and retain essential data features, as noise and short-

term fluctuations are often represented in the higher-order EOFs and thus excluded from the 

final dataset. DINEOF has been widely used across multiple fields and variables, in both 

univariate and multivariate datasets, though it has not yet been applied to high-frequency 

geostationary color data (e.g., Alvera‐Azcárate et al., 2007; Ganzedo et al., 2011; Miles et al., 

2009; Nechad et al., 2011; Sirjacobs et al., 2011). Further details on the methodology are 

available in Beckers and Rixen (2003) and Alvera-Azcárate et al. (2005). 

In this study, the DINEOF algorithm was configured to retain the first 10 EOF modes, which 

were found to capture most of the variance in the wind data. The convergence criterion was set 

to a root mean square error (RMSE) of less than 0.1 m/s, ensuring that the reconstructed data 

closely matched the observed values. 

DINEOF was implemented using the 3.0 Linux binary available through the University of 

Liège Geo-Hydrodynamics and Environment Research group (GHER), and MATLAB was 

used for data handling and analysis. The method starts by organizing an image archive into a 

two-dimensional matrix, with one axis representing spatial and the other representing 

successive temporal scenes. 



 

Figure 1: Distribution of Randomly Chosen Buoy Stations in the Indian Ocean. 

Using iterative Singular Value Decomposition (SVD), the algorithm fills in missing data by 

generating Empirical Orthogonal Functions (EOFs), which summarize the dataset's key 

dynamics. An initial guess is made for missing data values, and iterations proceed until they 

converge to a stable solution. The number of EOF modes is optimized by minimizing global 

error through cross-validation, after which a final SVD run produces the completed dataset. 

DINEOF has successfully filled data gaps in sea surface temperature (SST), ocean color, and 

other satellite-derived metrics, creating smoother, noise-filtered datasets. The method captures 

long-term trends and system dynamics, which can also aid multivariate analyses involving 

multiple parameters, such as SST and chlorophyll (CHL) (Aida Alvera-Azcárate et al., 2015, 

2021; Jayaram et al., 2018; Sirjacobs et al., 2011). 

DINEOF Method: 

DINEOF (Data Interpolating Empirical Orthogonal Functions) is a technique to reconstruct 

missing data in geophysical datasets, such as satellite observations. Satellite data, like that from 

Oceansat-2, often have gaps. In the case of wind data, these gaps can arise from rain 

contamination, where the radar signal is affected by heavy rainfall, or from limitations in the 

instrument's swath coverage. DINEOF aims to fill these gaps to preserve the underlying spatial 

and temporal patterns in the data. While the report highlights the effectiveness of DINEOF, it 



could also discuss the limitations of the method, such as its sensitivity to the choice of EOF 

modes or its performance in regions with complex wind patterns. 

Here's a simplified explanation of how DINEOF works: 

• Data Preparation: The method starts with the incomplete dataset, which is organized 

into a matrix. 

• Empirical Orthogonal Functions (EOFs): DINEOF uses Singular Value 

Decomposition (SVD) to decompose the data matrix into a set of orthogonal 

(uncorrelated) spatial patterns, called EOFs, and their corresponding time-varying 

amplitudes. EOFs represent the dominant modes of variability in the data.  

For a data matrix X → X = USVT 

• Reconstruction: The missing data points are estimated by projecting them onto the 

EOFs. Essentially, the method finds the combination of EOFs that best represents the 

known data and uses this combination to calculate the values in the gaps. 

• Iteration: The process may be iterated to improve the reconstruction. The estimated 

values are treated as known values in the next iteration, and the EOFs are recalculated. 

 

Figure 2: Oceansat-2-derived wind velocity in the Indian Ocean on October 1st, 2012, 

showing original gappy data (left) and DINEOF-filled wind velocity field (right), with arrows 

indicating direction and magnitude. 



In the figure, the left panel shows the gaps in the original OSCAT wind data. The right panel 

demonstrates how DINEOF has filled in these gaps, creating a more complete and continuous 

representation of the wind velocity field. This allows for a better understanding of atmospheric 

circulation and weather patterns over the ocean. Researchers and analysts are empowered to 

select or even combine these techniques to maximize data quality, enhance the robustness of 

their conclusions, and unlock deeper insights from incomplete datasets. 

Results & Discussions 

The DINEOF method is used to produce daily OSCAT wind composites over a full year in 

2012. These generated wind composites are then validated by comparing them with other 

available wind datasets. Specifically, the gridded OSCAT wind vectors produced using 

DINEOF are compared against (1) original, non-interpolated OSCAT wind data, (2) ASCAT 

wind composites, and (3) direct wind measurements from RAMA and NIOT buoys. The 

findings from these various comparisons are presented below. Figure 2(a-d) presents a 

schematic illustrating the DINEOF-interpolated wind vector composites and the original wind 

vectors from OSCAT for different dates between January and October 2012. 

Figure 2.1 showcases how the DINEOF method was applied to create composite wind vectors 

by interpolating the data from OSCAT on various dates within that period. 

 



 

Figure 2.1 shows the DINEOF interpolated zonal wind composites from January, April, July, 

and October 2012. 

 

Inter-comparison between DINEOF and OSCAT winds 

The daily composite OSCAT wind vectors generated by DINEOF are compared to the daily 

OSCAT wind vectors without interpolation. Figure 3(a)–(d) provides a qualitative comparison 

between the interpolated and non-interpolated wind vectors, using data from selected days in 

January 2012 as an example. The comparison reveals a strong correlation between the two, 

with overlaid wind vectors showing a high degree of similarity, as indicated by a correlation 

coefficient (R) of approximately 0.9 across most of the region for both ascending and 

descending passes (Figure 3(e) and (f)). The cyclonic circulation in the southern Indian Ocean 

is clearly captured in the DINEOF-interpolated wind, aligning well with the original OSCAT 

wind vectors. Based on the findings in Figure 3, it can be concluded that the DINEOF-

interpolated winds are in good agreement with the observed OSCAT winds, except for a few 

discrepancies near the swath edges, likely due to the limitations in the radius of influence and 

error computation during gridding. 



 

Figure 3(a)-(d) illustrates the DINEOF-interpolated daily wind composites compared to the 

original OSCAT wind vectors. The black vectors represent the DINEOF-reconstructed winds, 

showing a high degree of similarity with the original data, particularly in capturing the 

cyclonic circulation in the southern Indian Ocean. 

Comparison with In-Situ Buoy Data 

In situ data from the RAMA and OOS-NIOT buoys (locations displayed in Figure 1) were 

compared to verify the quality of the gridded OSCAT daily wind composites. To evaluate the 

performance of the OSCAT-derived winds, the analysis was carried out over the course of a 

year in 2012, concentrating on various wind speed (WS) categories. 

Three different wind speed ranges were compared, such as less than 3 m/s, 3 to 10 m/s, and 

more than 10 m/s. Table 1 summarizes validation metrics (RMSD, correlation, and bias) for 

various buoy locations. The results indicated: 

• Low wind speeds (≤3 m s⁻¹): Slight underestimation, with RMSD values ranging from 

0.8 to 2.7 m s⁻¹. 



• Moderate wind speeds (3–10 m s⁻¹): Optimal performance, with low bias and high 

correlation. 

• High wind speeds (≥10 m s⁻¹): Marginal overestimation, with RMSD values from 0.5 

to 2.2 m s⁻¹. 

Buoy ID Latitude Longitude RMSD (m/s) R Bias (m/s) 

RAMA 

[2300008] 

12°N 90°E 1.7859 0.92 -0.3216 

RAMA 

[2300007] 

8°N 90°E 2. 1956 0.85 -0.5822 

RAMA 

[1400042] 

12°S 55°E 2.3241 0.91 -0.2586 

RAMA 

[5300006] 

12°S 80.5°E 0.1689 0.93 -0.3516 

RAMA 

[1400041] 

8°S 55°E 0.1772 0.92 -0.2472 

RAMA 

[2300001] 

0°N 80.5°E 2.0251 0.89 -0.3230 

RAMA 

[5300005] 

8°S 80.5°E 2.6501 0.84 -0.5426 

Table 1: Correlation, Bias, and Root Mean Square Deviation (RMSD) of RAMA Buoy Data. 

In general, the comparison illustrated a high degree of correlation between the buoy 

observations and the DINEOF-interpolated OSCAT winds, especially for wind speeds greater 

than 3 m/s. The range of 3–10 m/s was where the correlation was the most powerful, and both 

the bias and RMSD values remained within acceptable boundaries. Nevertheless, the OSCAT 

winds effectively filled in the periodic gaps in buoy data, enabling a more accurate 

intercomparison in this investigation. 

The dependability of the wind composites derived from OSCAT was highlighted by this 

analysis, especially for operational and research applications in the Indian Ocean region. The 

discussion of the results could be expanded to provide more in-depth insights into the spatial 

and temporal patterns of the reconstructed wind fields and the implications of these findings 

for regional climate and weather patterns. 



Spatiotemporal Dynamics 

Comparison with in insitu buoy data according to the randomly selected locations in the Indian 

Ocean region could be identified as figures 4(a), 4(b), 4(c), 4(d), 4(e), 4(f), 4(g), 4(h), 4(i), and 

4(j). 
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                           Figure 4(i)               Figure 4(j) 

Figure 4: Comparison of OSCAT and Buoy Wind Data at Multiple Locations in the Indian 

Ocean Region in 2012. The black lines represent OSCAT data, and the red lines represent 

buoy data. 



An in-depth comparative analysis of OSCAT and buoy-derived wind observations across 

multiple locations in the Indian Ocean during 2012 revealed distinct seasonal variations that 

closely corresponded with the Southwest and Northeast monsoons. The use of the Data 

Interpolating Empirical Orthogonal Functions (DINEOF) method significantly enhanced the 

temporal completeness of the OSCAT dataset, particularly during periods of high wind activity, 

and improved agreement within in situ buoy measurements. 

At 15°N, 68.98°E (Figure 4a), a classic monsoonal wind pattern emerged, with lower wind 

speeds during the inter-monsoon phases (March–April, September–October) and peak speeds 

during the Southwest monsoon (June–August). The zonal wind shifted westward during the 

monsoon, while the meridional wind transitioned from strong southward flow in June to 

northward flow in December. DINEOF smoothed out overestimations and improved alignment 

with buoy data, particularly during peak monsoon activity. Similarly, 10.49°N, 72.25°E (Figure 

4b) experienced maximum wind speeds during the Southwest monsoon. Zonal winds showed 

westward flow between June and August, with eastward winds emerging post-monsoon. The 

meridional wind was strongly southward during the monsoon, shifting northward in 

November–December. DINEOF effectively restored missing data and enhanced consistency 

with buoy readings. At 8°N, 90°E (Figure 4c), strong monsoonal winds prevailed from June to 

August. While OSCAT data slightly overestimated wind magnitudes, DINEOF successfully 

reconstructed gaps and stabilized the temporal profile. Westward zonal winds during the 

monsoon transitioned to eastward afterward, while the meridional winds shifted from 

southward (June–August) to northward (November–December), closely tracking buoy 

observations. In the southern Indian Ocean, 4°S, 80.5°E (Figure 4d) experienced peak wind 

speeds above 12 m/s during the Southwest monsoon (June–July) and a secondary peak during 

the Northeast monsoon (October–November). Zonal winds reversed from westward (SW 

monsoon) to eastward (NE monsoon), while meridional winds transitioned from southward to 

northward during the respective monsoon phases. DINEOF reconstruction improved the 

completeness and temporal representation of these shifts. At 12°S, 80.5°E (Figure 4f), a similar 

monsoonal pattern was observed, with strong winds during both monsoon seasons. Zonal winds 

flowed westward during the Southwest monsoon and reversed direction during the Northeast 

monsoon. Meridional winds displayed a seasonal transition from southward (SW monsoon) to 

northward (NE monsoon). DINEOF enhanced the accuracy of these dynamics by reducing 

noise and filling data gaps. 



Further west, 8°S, 55°E (Figure 4g) showed strong seasonal peaks, with the highest winds in 

June–July and a secondary peak in October–November. The zonal wind shifted from westward 

during the Southwest monsoon to eastward in the Northeast monsoon. Meridional winds 

followed a predictable seasonal cycle—northward during the NE monsoon and southward 

sssssssduring the SW monsoon. DINEOF improved temporal consistency and better matched 

buoy readings. At 12°S, 55°E (Figure 4h), wind magnitudes peaked during both monsoons, 

with zonal winds reversing from westward to eastward between seasons. Meridional winds 

followed the same south-to-north seasonal transition, with DINEOF reconstruction smoothing 

the time series and aligning it more closely with in situ data. At 16°S, 55°E (Figure 4i), the 

Southwest monsoon produced the highest wind speeds (10–12 m/s), while the Northeast 

monsoon showed a secondary peak (7–9 m/s). Zonal winds were westward during the 

Southwest monsoon and eastward during the Northeast monsoon. Meridional wind patterns 

remained consistent with those observed at other locations, and DINEOF significantly 

improved the temporal fidelity and alignment with buoy measurements. Finally, 12°S, 93°E 

(Figure 4j) displayed a similar bimodal seasonal wind pattern, with strong westward zonal 

winds during the Southwest monsoon and eastward flow during the Northeast monsoon. 

Meridional winds transitioned seasonally, and DINEOF reconstruction proved essential in 

maintaining temporal continuity and accurately reflecting buoy data throughout the year. 

Overall, the application of DINEOF across diverse geographic regions in the Indian Ocean 

significantly strengthened the temporal and spatial consistency of wind data, enabling more 

accurate assessments of seasonal wind dynamics.  

To assess the monthly performance of the DINEOF reconstruction method, Gap-Filled plots 

were generated for all twelve months of 2012, comparing raw OSCAT U-wind data with the 

corresponding DINEOF-reconstructed fields (Figure 8). The raw plots clearly show substantial 

data gaps, particularly over open-ocean regions and during periods of adverse atmospheric 

conditions. In contrast, the DINEOF reconstructions effectively fill these gaps using dominant 

spatiotemporal modes extracted from the available data, resulting in complete and physically 

consistent wind fields. 

 



  

  

  

  

  

 



  

Figure 8: Monthly U-wind fields from OSCAT data. Left panels show raw observations and 

right panels show DINEOF-reconstructed fields from January to December 2012. 

The reconstructed fields preserve important mesoscale and synoptic-scale features across all 

months, such as coastal wind intensification along the Somali coast, equatorial wind 

convergence during the inter-monsoon periods, and the strong southwest monsoon flow 

observed during boreal summer. The smooth yet dynamically realistic transitions in the 

DINEOF output suggest that the method successfully captures underlying atmospheric 

variability without introducing artificial gradients or overly smoothing the data. Furthermore, 

seasonal patterns and intra-annual variability in wind strength and direction are retained, 

providing confidence in DINEOF’s ability to reconstruct both persistent and transient features. 

These monthly visual comparisons complement the quantitative evaluation discussed earlier—

such as the consistently low RMSE and high correlation values—and collectively demonstrate 

the robustness and accuracy of DINEOF for gap-filling in satellite-derived wind products. The 

ability to restore missing spatial patterns with high fidelity makes DINEOF particularly suitable 

for operational oceanography and climate studies that rely on continuous, high-resolution wind 

fields for modeling and analysis. 

Comparison with DIVA 

Certainly! When comparing the gap filling techniques DINEOF (Data INterpolating Empirical 

Orthogonal Functions) and DIVA (Data-Interpolating Variational Analysis), the figures and 

analyses provide insightful perspectives on their respective performances and applications. 

DINEOF is renowned for its ability to effectively reconstruct missing data in spatial-temporal 

datasets by leveraging empirical orthogonal functions. This technique excels in extracting 

dominant patterns from incomplete data through an iterative process, which often results in 

accurate and reliable gap filling without requiring prior assumptions about the data distribution. 

On the other hand, DIVA utilizes a variational approach that integrates physical constraints and 

statistical relationships to interpolate missing values. It is particularly valued for its flexibility 



in handling irregularly spaced data and for incorporating additional knowledge about the 

underlying processes, which enhances the physical realism of the reconstructed fields. Figures 

comparing DINEOF and DIVA typically illustrate metrics such as Root Mean Square Error 

(RMSE), correlation coefficients, and visual assessments of spatial patterns before and after 

gap filling. Analyses consistently show that DINEOF performs exceptionally well in datasets 

where dominant modes of variability are strong and can be captured effectively by EOFs. It 

often achieves lower RMSE values and higher correlations with observed data compared to 

simpler interpolation schemes. However, DIVA shines in contexts where physical constraints 

are crucial, or when the data gaps are extensive and irregular. The incorporation of variational 

principles allows DIVA to produce smoother and more physically consistent reconstructions, 

which can be particularly beneficial in oceanographic and atmospheric studies. Encouragingly, 

the complementary strengths of DINEOF and DIVA suggest that the choice between them can 

be tailored to the specific characteristics of the dataset and the goals of the analysis.  

When comparing DINEOF (Data Interpolating Empirical Orthogonal Functions) and DIVA 

(Data-Interpolating Variational Analysis) for gap-filling satellite oceanographic datasets such 

as Oceansat-2 scatterometer (OSCAT) wind data, a noticeable distinction emerges in the 

preservation of spatial features—especially gradients. DINEOF, relying on the statistical 

decomposition of dominant spatial and temporal patterns in the data, effectively reconstructs 

missing values while retaining sharp transitions and gradients. 

 



Figure 5: Comparison of OSCAT U-wind for May 2012: (left) raw data, (middle) DIVA 

reconstruction, and (right) DINEOF reconstruction. 

The figure 5 presented offers a visual comparison of wind vector fields (U component) from 

the OSCAT (Oceansat-2 scatterometer) dataset for May 2012, showing three panels: the Raw 

U-wind data (left), the DIVA-reconstructed U-wind (middle), and the DINEOF-

reconstructed U-wind (right). Each panel includes wind vectors overlaid on a color-shaded 

background representing wind speed intensity in m/s, with missing data regions clearly visible 

in the raw data. This side-by-side layout provides a clear insight into the structural differences 

between the two gap-filling techniques—DINEOF and DIVA—in comparison to the original, 

albeit incomplete, measurements. 

The Raw U-wind data shows prominent data gaps, particularly in the central and southwestern 

Indian Ocean. Despite the missing data, the raw field reveals distinct wind patterns, including 

sharp gradients and directional transitions, especially in equatorial and coastal zones. The 

DIVA reconstruction (middle panel) fills in these gaps but does so by producing a highly 

smoothed field. As a result, many of the sharper gradients and finer-scale wind features evident 

in the raw data are lost. Moreover, the reconstructed values in DIVA tend to be lower in 

magnitude, and there are noticeable directional inconsistencies—particularly in the 

southwestern region—where the vectors deviate from expected patterns based on surrounding 

observations. 

In contrast, the DINEOF reconstruction (right panel) retains much of the spatial structure 

seen in the raw data. Gradients in wind speed are more pronounced and better aligned with the 

observed wind field, especially in the equatorial region and along the Somali coast. The 

direction of the reconstructed vectors in DINEOF also matches more closely with the raw data, 

suggesting a better preservation of physical dynamics. This outcome is attributed to DINEOF's 

reliance on empirical orthogonal functions (EOFs), which capture dominant variability modes 

and allow for statistically consistent reconstructions. Overall, the figure highlights that 

DINEOF outperforms DIVA in terms of maintaining gradient intensity and wind directionality, 

making it a more reliable method for reconstructing satellite wind fields when retaining 

physical realism is critical. 

To quantitatively support the visual comparison of DINEOF and DIVA reconstructions against 

raw OSCAT U-wind data, we computed key statistical metrics over the region where raw 

observations are available. 



 

Figure 6: Quantitative assessment of reconstruction performance using monthly error 

statistics and correlation coefficients for U wind. 

The quantitative results shown in Figure 6 provide strong support for the visual evidence that 

DINEOF outperforms DIVA in reconstructing OSCAT wind data. The evaluation metrics 

clearly demonstrate the effectiveness of the DINEOF (Data Interpolating Empirical Orthogonal 

Functions) method in accurately filling gaps in the wind field, maintaining both the structure 

and intensity of the original observations. Monthly error metrics—including Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE)—

consistently demonstrate low reconstruction errors, particularly from February through 

September, where RMSE remains below 1.5 m/s and MAE often stays under 0.8 m/s. These 

low error values reflect DINEOF's ability to accurately estimate missing values without overly 

smoothing the dataset. Furthermore, the monthly correlation coefficients (R) between 

DINEOF-reconstructed and raw data remain remarkably high, ranging from ~0.91 in January 

to nearly 0.99 in July and September. This strong correlation confirms that DINEOF not only 

preserves spatial structure and gradient information but also maintains temporal consistency 

with the original dataset.  



 

Figure 7: Evaluation metrics for V wind component. 

The method leverages the dominant variability modes of the dataset through empirical 

orthogonal functions, enabling it to capture both large-scale and fine-scale wind patterns, 

making it especially suitable for geophysical applications like ocean surface wind field 

reconstruction. Similarly, evaluation metrics were calculated for v wind data and showcased in 

Figure 7. In summary, the figures and analyses underscore the impressive capabilities of both 

DINEOF and DIVA as gap filling techniques. By understanding their unique advantages and 

evaluating their performance through quantitative and qualitative metrics, practitioners can 

confidently apply these methods to improve data continuity and reliability in their studies. 

 

Conclusions 

This study conducted a detailed assessment of Indian Ocean wind dynamics in 2012 by 

applying the Data Interpolating Empirical Orthogonal Functions (DINEOF) method to 

reconstruct missing data from the OceanSat-2 Scatterometer (OSCAT). The analysis revealed 

consistent seasonal wind patterns across multiple spatial domains, with the weakest winds (3–

5 m/s) observed during inter-monsoon periods and the strongest winds (10–13 m/s) during the 

Southwest and Northeast monsoons. 

DINEOF proved highly effective in reconstructing missing wind data, maintaining both 

temporal and spatial coherence and achieving a strong correlation (R ≈ 0.9) with the original 



OSCAT measurements. Validation results indicated Root Mean Square Deviation (RMSD) 

values ranging from 0.5 to 2.7 m/s, with the best performance occurring within the 3–10 m/s 

wind speed range. Slight underestimations and overestimations were noted at the lower and 

upper extremes, respectively. The reconstructed data captured key regional wind dynamics, 

including meridional shifts and zonal wind reversals associated with monsoonal transitions, 

across latitudes from 15°N to 16°S. 

By enhancing data completeness and preserving dominant wind features, this study 

underscores DINEOF’s utility as a powerful statistical tool for satellite wind data 

reconstruction. Its application offers valuable support for oceanographic modeling, climate 

analysis, and maritime operations. Moreover, the findings contribute to a deeper understanding 

of atmospheric circulation patterns and complex air-sea interactions in the Indian Ocean. 

Future Work 

Future studies could extend the use of DINEOF to other satellite-derived geophysical variables 

such as sea surface temperature (SST) and ocean color, offering broader insights into regional 

ocean-atmosphere processes. Additionally, incorporating meteorological parameters like air 

temperature, humidity, or surface pressure could help develop a more comprehensive 

understanding of the Indian Ocean climate system. 
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